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Abstract 

 

The nonlinear radial oscillations of a spherical gas bubble encapsulated in an 

elastic shell are investigated by means of an asymptotic method when the viscous 

forces and compressibility effects of the surrounding liquid are accounted for. The 

microbubble is immersed in an infinite, Newtonian surrounding fluid and subject to a 

sinusoidal acoustic excitation in the far field. Three different constitutive laws have 

been employed describing the viscoelastic properties of the shell, namely the Kelvin-

Voight (KV), the Mooney-Rivlin and the Skalak (SK) models are used, pertaining  to an 

almost linear for small displacements, strain-softening, and strain-hardening behavior 

of the material, respectively. Approximate analytical solutions describing the steady-

state oscillations have been obtained, corresponding to  the fundamental resonance 

of the bubble, that are valid to second order of approximation in terms of the sound 

amplitude. The obtained results are displayed in the form of frequency response 

curves of the steady-state solutions for different sets of parameters. When the 

membrane exhibits a strain-softening behavior the response curves shift to lower than 

the natural resonance frequencies whereas when the material behavior is described 

as strain-hardening the opposite results are obtained. . The results obtained 

analytically are compared to the ones obtained numerically in previous studies with 
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satisfactory agreement, especially when weak damping mechanisms are considered.

   

Keywords: bubble oscillations, steady-state solution, encapsulated bubbles, 

compressibility effects, analytical solutions  
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Abstract 

Οι μη γραμμικές ταλαντώσεις σφαιρικής φυσαλίδας, περιβαλλόμενης από 

ελαστικό κέλυφος, που περιέχει αέριο, μελετώνται με τη χρήση ασυμπτωτικής 

ανάλυσης όταν οι ιξώδεις δυνάμεις και τα φαινόμενα συμπιεστότητας του ρευστού 

λαμβάνονται υπόψιν. Η φυσαλίδα είναι βυθισμένη σε Νευτώνειο ρευστό  χωρίς 

παρουσία συνόρων και υποκείμενη σε ημιτονοειδή ακουστική διαταραχή. Τρεις 

διαφορετικοί καταστατικοί νόμοι χρησιμοποιήθηκαν για την περιγραφή των 

ιξωδοελαστικών ιδιοτήτων του κελύφους, ο νόμος Kelvin-Voight, ο νόμος Mooney-

Rivlin και ο νόμος Skalak που αφορούν σε σχεδόν γραμμικά για μικρές μετατοπίσεις, 

strain-hardening και strain-softening υλικά αντίστοιχα. Προσεγγιστικές αναλυτικές 

λύσεις λήφθηκαν για τη μόνιμη κατάσταση της θεμελιώδους ταλάντωσης σε 

συνθήκες συντονισμού που είναι αποδεκτές στη δεύτερη τάξη προσέγγισης με βάση 

το πλάτος της ακουστικής διαταραχής. Τα αποτελέσματα αναπαρίστανται σε 

γραφήματα συναρτήσει της συχνότητας για τη μόνιμη κατάσταση για διαφορετικές 

τιμές των εμπλεκόμενων παραμέτρων. Όταν η μεμβράνη χαρακτηρίζεται ως strain-

softening οι καμπύλες απόκρισης συντονισμού μετατοπίζονται σε συχνότητες 

χαμηλότερες της ιδιοσυχνότητας του συστήματος, ενώ η αντίθετη συμπεριφορά 

παρατηρείται για strain-hardening υλικά. Τα αποτελέσματα που λαμβάνονται από 

την προσεγγιστική αναλυτική λύση, συγκρίνονται με αποτελέσματα που λήφθηκαν 
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μέσω αριθμητικών μεθόδων σε προηγούμενες μελέτες και παρατηρείται 

ικανοποιητική συμφωνία, ιδίως για μικρές τιμές των παραμέτρων που αφορούν 

στους μηχανισμούς απόσβεσης. 

Λέξεις-Κλειδιά: ταλαντώσεις φυσαλίδας, λύση μόνιμης κατάστασης, 

ενθυλακωμένες φυσαλίδες, συμπιεστή ροή, αναλυτικές λύσεις  
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1 INTRODUCTION 

The oscillating motion of a bubble, immersed in a viscous, slightly compressible 

liquid, insonated by an acoustic disturbance in the far field is investigated in the 

present study. 

A bubble is capable of oscillating in a variety of ways. These oscillations are 

described by periodic variations in its shape and volume. It is possible that some of 

the oscillation modes occur simultaneously and a very complex resultant motion is 

produced. This motion can be even more difficult to describe and solve when the full 

parameters of the system bubble-host liquid are accounted for. 

The most straight forward case is the one referring to a spherically symmetric 

gas bubble performing a purely radial motion surrounded in an incompressible fluid. 

When formulated, the system can be described by the Rayleigh-Plesset equation and 

when coupled with the appropriate kinematic and dynamic boundary conditions it 

yields the instantaneous radial position of the bubble surface. 

Because of the highly nonlinear nature of the governing equations, the 

oscillations of a bubble in a liquid present a difficult mathematical problem. 

Attempted solutions are either numerical or analytical based on simplified versions of 

the initial nonlinear problem neglecting terms that in general contribute to the 

response of the investigated bubble. One of the first and more rigorous attempts to 

the full nonlinear problem was made by Prosperetti, (1974)[3] who studied the steady 

state of the bubble oscillations in an incompressible fluid analytically, using the Krylov-

Bogolyubov asymptotic method. Lauterborn, (1974)[4] approached the same subject 

numerically and produced similar results. Samek, (1980)[5] attempted an analytical 

solution to the same subject using the Bogolyubov – Mitropolskiy asymptotic 

expansion technique. All authors mentioned studied the main, harmonic, and 

subharmonic resonances of the microbubble subject to an acoustic disturbance.  

Regarding the main resonance, which is the subject of the present study, they found 

the existence of a shift in the amplitude curves towards lower frequencies than the 
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natural frequency of the bubble, indicating a “soft spring” behavior of the system 

while “jump” phenomena were observed in the numerical studies. 

Moving on from the incompressible flow problem a more systematic approach 

led to various forms of the Rayleigh-Plesset equation accounting for compressibility 

effects. The most notable ones were listed by Prosperetti and Lezzi, (1986)[7] along 

with their version of the problem formulation. They showed that entire families of 

equations exist having the same degree of accuracy and therefore are entirely 

equivalent on formal ground. In the present study the equation used is the one 

developed by Keller and Miksis, (1980)[6] which includes the effects of acoustic 

radiation, compressibility, viscosity, surface tension and an incident sound wave.  

Encapsulated microbubbles are investigated by adding shell thickness, 

elasticity, and viscosity terms to the normal stress balance for the bubble interface. In 

the earlier attempts, the membrane  was modeled in a linear way with a constant 

elasticity. Church, (1995)[8] in his study derived a variation of the Rayleigh-Plesset 

equation describing the dynamics of encapsulated gas bubbles. He modeled the shell 

of the bubble as continuous layers of incompressible solid elastic material. In his 

derivations the finite thickness of the shell was considered and a double interface for 

the bubble wall was produced. He extracted analytical solutions of the derived 

equations for the fundamental and second harmonic response and concluded that the 

resonance frequency of individual bubbles increase as the modulus of rigidity 

increases, while the damping of the system is dictated by viscous terms. Frinking and 

De Jong, (1998)[9] studied  microbubbles encapsulated in thicker membranes and 

modeled the shell as a viscoelastic solid. They used linear models or semiempirical 

laws for the shell elasticity and viscosity respectively and obtained numerical solutions 

to an altered Rayleigh-Plesset equation. They developed a model  that described the 

linear and nonlinear responses of the encapsulated bubbles and underlined the effects 

of the shell on the response of the bubble. Khismatullin and Nadim, (2002)[11] 

undertook a more rigorous mathematical approach towards the description of the 

radial pulsations of encapsulated bubbles. They derived an equation describing 

linearly pulsating microbubbles using the method of matched asymptotic expansions. 
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The Kelvin-Voight and the 4-constant Oldroyd model were employed to describe the 

viscoelastic properties of the shell and the liquid respectively and the acoustic 

disturbance was restricted to small values. They showed that if the bubble is small and 

covered by a membrane whose thickness is much smaller than the bubble radius, the 

damping mechanism of the radial oscillations is governed by the shell viscosity. 

Moreover, when the surrounding liquid is viscoelastic, its viscous damping 

contributions are much smaller to those of a Newtonian liquid. It was also shown that 

the resonance frequency of an encapsulated bubble highly depends on the liquid and 

shell viscosities and thus it differs from the undamped natural frequency and 

resonance occurs at higher frequencies for the encapsulated bubbles. 

Most materials though do not respond to external stresses in a linear way. The 

Kelvin-Voight model does not account for changes in the material induced by the 

external stresses applied on it. Unlike the linear stress-strain behavior predicted by 

Hooke’s law, most materials exhibit a varying apparent elasticity modulus when they 

are subject to external disturbances of increasing intensity or increasing frequency []. 

Materials whose slope increases as deformations extend are called strain-hardening 

while materials with a decreasing slope are called strain-softening.  Barthes-Biesel et 

al. (2002)[12] studied the effect of constitutive laws used to describe the thin 

membrane of the shell, on flow induced capsule deformation. The three laws used 

were Hooke’s law Mooney-Rivlin and Skalak law and applied them on small and large 

deformations of the microbubble. They found that in the asymptotic limit of small 

deformations the three laws tend to produce similar results and reduce to the linear 

model of the shell, whereas when large deformations are applied, they produce 

dissimilar results with Mooney-Rivlin law describing strain-softening materials and 

Skalak law strain-hardening materials. Pelekasis and Tsiglifis, (2008) followed a similar 

approach for the modeling of the bubble shell. They used the Keller-Miksis[6] equation 

for the mathematical representation of the bubble motion  and examined numerically 

how the viscoelastic behavior of the membrane along with the external liquid 

attributes such viscosity, compressibility and nonlinearity in the acoustic disturbance 

affect the response of the bubble. They found that the resonance frequency of strain 

softening material decreases with increasing amplitude, whereas the opposite occurs 
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for strain hardening materials. They also investigated the effects of scattering on the 

bubble surface and concluded that the total scattering cross section of a Skalak 

membrane increases with increasing amplitude, while for Mooney-Rivlin and Kelvin-

Voight membranes tends to decrease. Gong, Cabodi and Porter, (2014)[17] addressed 

the dependency of the viscoelastic properties of the shell to pressure suggesting a 

non-Newtonian behavior. They studied the pressure dependent resonance in lipid 

coated monodisperse microbubbles driven at low pressures utilizing a modified 

Rayleigh-Plesset equation. An experimental investigation was conducted, and the 

results were compared to theoretical predictions. They observed a noticeable shift in 

resonance frequency for free bubbles with a varying imposed disturbance while for 

coated microbubbles the resonance occurred at relatively stable values, indicating 

that the shift occurs due to primarily a change in the shell properties and not non-

linear oscillations. To account for the shell structure, they employed a model for an 

effective surface tension proposed by Marmottant, (2005)[14] and modified it by 

varying the elastic modulus which was taken to be a function of pressure. They  found 

that insonated coated microbubbles described by their model shifted towards the 

resonance frequency of a free microbubble with an accompanying reduction of the 

shell elasticity constant indicating a strain softening behavior of the shell. Naude, 

Mendez et al, (2020)[20] used a modified version of the Rayleigh-Plesset equation for 

a Mooney-Rivlin encapsulated bubble to describe its radial dynamics. They considered 

the thickness of the shell to be infinitesimally small and applied small acoustic 

disturbances in the far field. They used a perturbation approach for small values of the 

disturbance amplitude, whereas for bigger values a numerical solution was employed. 

In their asymptotic analysis they assumed that the amplitude of the external 

disturbance is of the third order and the bubble oscillates around its equilibrium radius 

with an amplitude of the first order. Viscous damping, namely the inverse of the 

Reynolds number of the liquid were of the second order. A multiple time scale analysis 

was executed and results for different parameters of the membrane elasticity and 

parameters regarding the flow , indicated that nonlinear resonance occurs in 

frequencies higher than the linear resonance frequency, a contradicting result when 

compared to the numerical results of Pelekasis and Tsiglifis[15]. 
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In the present study the approach for the problem formulation is the one 

followed by Pelekasis and Tsiglifis[15]. The Keller-Miksis[6] model for the bubble 

dynamics is used along with the Kelvin-Voight (KV), Mooney-Rivlin (MR) and Skalak 

(SK) constitutive laws for each case of the membrane material. An asymptotic 

expansion scheme, the fundamentals of which are presented by Jordan and Smith[1] 

in their book for nonlinear ordinary differential equations, is used in an attempt to 

obtain approximate analytical solutions for an encapsulated microbubble immersed 

in a slightly compressible liquid subject to an oscillating ambient pressure field. Radial 

volume oscillations are studied and the results regarding the main resonance cases 

are depicted in amplitude-frequency figures and the results obtained are compared 

to those attained numerically by Pelekasis and Tsiglifis[15] for various sets of 

parameters. 

The remainder of the present of the present study contains a presentation of 

the mathematical formulation of the problem in chapter 2, the asymptotic analysis 

application in chapter 3, a brief presentation of the numerical process followed by 

Pelekasis and Tsiglifis[15] in chapter 4, an application for the free bubble case and 

literature review in chapter 5 , a presentation of the results obtained analytically for 

free and encapsulated bubbles and a comparison with the numerical results of 

Pelekasis and Tsiglifis in chapter 6 and finally conclusions and suggestions for further 

studies in chapter 7.  
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2 PROBLEM FORMULATION 

2.1 Initial state of the problem 

In the present study we examine the non-linear oscillations of bubbles 

encapsulated in an elastic shell. To do so we must first determine the state of the 

problem.  

The initial conditions of the problem refer to the equilibrium state of a bubble 

submerged in a Newtonian fluid of density 𝜌𝑙  and constant dynamic viscosity 𝜇𝑙. The 

undisturbed static pressure of the surrounding liquid is taken to be uniform and equal 

to 𝑃′𝑠𝑡 . We also account for compressibility phenomena in the surrounding liquid 

which may be small but not negligible.  The initial microbubble of radius 𝑅0 containing 

an insoluble ideal gas has a viscoelastic membrane surrounding it. It is considered 

volume incompressible with shear modulus 𝐺𝑠 and viscosity 𝜇𝑠. The shell thickness 𝛿 

is taken to be much smaller than the initial radius 𝑅0. Any effects of residual stresses 

are neglected so that at the equilibrium state the bubble is considered spherical and 

free of stresses. The gas pressure inside the bubble is considered uniform and constant 

at 𝑃𝑏,0 

We investigate the bubble response to a disturbance imposed on the far 

pressure field. In this case the ambient pressure in the field is the sum of the static 

pressure and the imposed acoustic disturbance:  

 𝑃′∞  =  𝑃′𝑠𝑡  +  𝑃′𝑎𝑐  2.1 

where 𝑃′𝑎𝑐 is the sinusoidal pressure disturbance:  

𝑃′
𝑎𝑐 = 𝜂𝑃′

𝑠𝑡𝑠𝑖𝑛(𝜔𝑓𝑡′) 

where 𝜂𝑃′𝑠𝑡  is the disturbance amplitude and 𝜔𝑓  is the angular forcing frequency 

lying in the ultrasound range. The above expression is a close approximation of the 

pressure distribution in the liquid for the case of an imposed disturbance whose 

wavelength is large compared to the radius of the affected bubble.  

(Prosperetti 1974)[3] 
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To specify the internal pressure of the bubble we assume that the liquid 

remains isothermal throughout the process. This uncouples the internal with external 

pressure and we can calculate the former without accounting for the external 

phenomena. The internal pressure is taken to be 𝑃𝑏  and its variations are applied 

instantaneously and uniformly throughout the gas due to its negligible density and 

viscosity. In general, it is calculated through the application of conservation laws inside 

the bubble but for the present study a simpler approach is used where we assume 

adiabatic behavior for the bubble, thus the bubble volume-pressure relation reads   

 𝑃′𝑏,0𝑉′0
𝛾

= 𝑃′𝑏𝑉′𝛾 2.2 

where zero index denotes equilibrium state and 𝛾 is the adiabatic polytropic constant 

which remains constant throughout the motion. Assuming a stress-free state for the 

initial state on the interface, 𝑃𝑏,0  is related to the ambient pressure through the 

Young-Laplace equation 

 
𝑃𝑏,0 = 𝑃𝑠𝑡 +

2 𝜎

𝑅0
 

2.3 

Equation 2.2 is applicable when thermal damping is neglected since such 

phenomena cause a phase difference between pressure and volume variations. This 

assumption is valid for smaller bubbles where the heat transfer time scale is fast 

compared to that of the problem under consideration. For bubbles of bigger radii 

thermal dissipation and acoustic attenuation should be taken under consideration. 

This can be achieved by introducing effective viscosities that account for thermal and 

acoustic damping and adding dissipative 

terms proportional to the velocity of the 

interface in the following equations. In 

this way valid approximate results can be 

deduced from the governing equations 

of the problem ,Prosperetti ,(1974)[3] 

  Fig 1 Bubble model in an infinitely extended, 
slightly compressible liquid with parameters and 
notation used. 
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2.2 Governing Equations 

2.2.1 Flow formulation 

As stated above we consider a microbubble, submerged in a Newtonian fluid, 

that undergoes time dependent change of volume containing an ideal gas. It remains 

spherical throughout the entirety of the motion and thus, its surface only moves in 

the radial direction. It follows that the liquid motion is strictly radial too. With the 

assumption of spherical symmetry,  the motion of the liquid can be described by the 

radial component of equations of continuity and momentum. The viscous term in the 

momentum equation has been omitted since it enters through the liquid’s 

compressibility which we assume to be small. Since a purely radial motion is also 

irrotational we introduce a velocity potential. 

 

𝒖 =
𝜕𝝋

𝜕𝑟
 

𝜕𝜌

𝜕𝑡
+ 𝛁 ∙ (𝜌𝐮) = 0 

𝜕𝒖

𝜕𝑡
+ 𝒖

𝜕𝒖

𝜕𝑟
+

1

𝜌

𝜕𝑝

𝜕𝑟
= 0 

 

To complete the formulation, we account for the kinematic condition at the 

membrane 𝑟 = 𝑅(𝑡). For a purely radial motion with no net mass flux across the 

interface, since the bubble only contains insoluble gas, we obtain 

 

𝑢[𝑟 = 𝑅(𝑡), 𝑡] =
𝑑𝑅

𝑑𝑡
 

 

By assuming an incompressible model in the near vicinity of the bubble, the 

flow is described by the modified Bernoulli equation Keller Miksis, (1980)[6] or the 

Laplacian Prosperetti and Lezzi, (1986)[7], whereas the far field flow is described by a 

compressible formulation and thus the standard wave equation is appropriate. Far 

from the bubble  refers to any distance that is comparable to the distance traveled by 
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sound in the time scale of the problem, while near refers to distances close to the 

bubble equilibrium radius 𝑅0. 

Utilizing the above observations for the governing equations of the motion, we 

get a nonlinear second order ordinary differential equation for the bubble radius, 

describing spherosymmetric oscillations of a microbubble in a compressible fluid, it is 

the Keller-Miksis[6] model describing moderate, fast, or even very fast radial 

oscillations by properly accounting for compressibility effects Pelekasis and Tsiglifis, 

(2008) [15].   

 

(1 −
𝑅′̇

𝑐′
) 𝑅′̈ 𝑅′ + (

3

2
−

𝑅′̇

2𝑐′
) 𝑅′̇ 2

= (1 +
𝑅′̇

𝑐′
)

1

𝜌′
(𝑃′

𝑙 − 𝑃′
∞) + 𝑅′

1

𝜌′𝑐′

𝑑

𝑑𝑡′
(𝑃′

𝑙 − 𝑃′
∞) 

 

2.4 

 

When solved it provides the instantaneous location of the bubble’s interface 

once the pressure field is known. To determine the liquid pressure in the interface we 

use a normal stress balance in the membrane. The normal component of the viscous 

stresses applied on the microbubble is given by  

 

 
𝒏 ∙ 𝑿′𝑙 ∙ 𝒏|𝑟′=𝑅′ = 𝜇𝑙 (2

𝜕𝑢′𝑟

𝜕𝑟′
−

2

3
𝜵′ ∙ 𝒖′) 

2.5 

 

where the second term of the right-hand side is a result of compressibility and can be 

omitted for slightly compressible fluids without losing any validity of the Keller-

Miksis[6] model. Prosperetti and Lezzi, (1986)[7] 

When the shell thickness is infinitesimally small the external and internal radii 

coincides and thus, a single force balance can be written for the gas-liquid interface 

depending on the constitutive law describing the bubble membrane Pelekasis and 

Tsiglifis, (2008) [15].  

 

 [𝑃𝐵
′ 𝑰 − 𝑃𝑙

′𝑰 + 𝑿𝑙
′] ∙ 𝑛 = 𝜎(𝜵𝑆

′ ∙ 𝒏) ∙ 𝒏 − 𝜵𝑆
′ ∙ 𝑿𝑀

′  2.6 
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where 𝑛 is the normal unit vector on the surface pointing outwards in the liquid, 𝑰 the 

two-dimensional unit tensor, 𝑃𝐵
′  , 𝑃𝑙

′ the dimensional pressure inside the bubble and 

liquid pressure respectively, 𝑿𝑙
′, 𝑿𝑀

′  the stress tensors of the liquid and membrane, 𝜎 

then interfacial tension between the membrane and the surrounding liquid and 𝜵𝑆
′  

the surface gradient operator. 

Equation 2.6 shows that the internal gas pressure 𝑃𝐵
′  exceeds the pressure of 

the liquid at 𝑟 = 𝑅(𝑡) by surface tension effects, the normal component of the liquid’s 

viscous stress and membrane viscous and elastic stresses. In the above equation liquid 

viscosity is being retained even though it is not included in the momentum equation. 

 

2.2.2 Viscoelastic behavior of the shell 

There are three constitutive laws describing the stresses that develop on the  

membrane, each one referring to the stress strain behavior of the material forming it. 

The analysis followed for the stress-strain behavior of the bubble membrane is in 

conformity with the one used by Pelekasis and Tsiglifis, (2008) [15].   

 

Linear stress strain behavior  

Kelvin-Voight model [KV] relates the viscoelastic stresses 𝜲′𝛭 to the strain 𝜞′ 

and rate of strain �̇�′ tensors in a linear way. It’s a generalized Hooke’s law with the 

addition of a viscous term and therefore it is only applicable in the case of small 

membrane displacements. The above modeling reads   

 

 𝜲′𝛭 = 2(𝐺𝑠𝜞′ + 𝜇𝑠𝜞′̇ )  

2.7  
𝜞′ =

1

2
[𝛁′𝒖′ + (𝛁′𝒖′)𝑇]   �̇�′ =

1

2
[𝛁′𝒘′ + (𝛁′𝒘′)𝑇] 

 

where 𝑢′ , 𝑤′ are the dimensional displacement and velocity of the membrane 

respectively, 𝐺𝑠 the shear modulus and 𝜇𝑠 the membrane viscosity. 
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Non-linear stress-strain behavior 

Most materials do not respond to external stresses in a linear way, they instead 

exhibit a varying slope in their stress strain relation at large deformations or at abrupt 

changes of pressure as it is in the case of ultrasound. Materials with non-linear 

behavior can be strain softening or strain hardening. The former case corresponds to 

an increasing shear stress modulus as the strain grows whereas the latter to a 

decreasing one. Taking these deviations from the linear model into consideration and 

using the appropriate expressions for the membrane stress tensor leads to more 

accurate results.  

 

In the case of strain softening materials, a typical strain energy describing a 

very thin sheet of isotropic, volume incompressible material is the one provided by 

the two-dimensional Mooney-Rivlin model. 

 

 
𝑤𝑀𝑅 =

𝐺𝑀𝑅

2
[(1 − 𝑏) (𝐼1 + 2 +

1

𝐼2 + 1
) + 𝑏 (

𝐼1 + 2

𝐼2 + 1
+ 𝐼2 + 1)] 

 

2.8 

 
𝑋′

𝑀11

𝑀𝑅
=

𝐺𝑀𝑅

𝜆1𝜆2
(𝜆1

2 −
1

(𝜆1𝜆2)2
) [1 + 𝑏(𝜆2

2 − 1)] 

 

 

In the present study we set the constant 𝑏, which indicates the material softness, 

equal to zero. That is the case of a neo-Hookean membrane which represents the 

appropriate linear stress strain relationship that accounts for the change in metric 

properties during deformation Pelekasis and Tsiglifis, (2008) [15].   

For the strain hardening case we use the constitutive law proposed by Skalak[2] 

  

 
𝑤𝑆𝐾 =

𝐺𝑆𝐾

2
(𝐼1

2 + 2𝐼1 − 2𝐼2 + 𝐶𝐼2
3) 

 

2.9 
 

𝑋′
𝑀11

𝑆𝐾
=

𝐺𝑆𝐾

𝜆1𝜆2
𝜆1

2(𝜆1
2 − 1) + 𝐶(𝜆1𝜆2)2[(𝜆1𝜆2)2 − 1] 

 

Parameter 𝐶 which represents the membrane area compressibility is always positive 

and for the present study we set 𝐶 = 1  
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In the above expressions 𝐼1 , 𝐼2 denote the two-dimensional strain invariants 

and 𝜆1 , 𝜆2 the principal extension ratios. In the case of spherosymmetric oscillations  

the two principal extension ratios are equal  

 

𝜆(𝑡) = 𝜆1 = 𝜆2 =
𝑅′(𝑡)

𝑅0
 

 

Substituting equations 2.7, 2.8, 2.9 into the normal stress balance 2.6 for the 

membrane we obtain the following expressions connecting the internal bubble 

pressure to the host liquid pressure on the interface. 

 

KV  𝑃𝑙|𝑟=𝑅 = 𝑃𝑏(𝑅) −
2𝜎

𝑅
− 4𝜇𝑙

�̇�

𝑅
− 4 ∙ 3𝛿𝜇𝑠

�̇�

𝑅2
− 2

3𝛿𝐺𝑠

𝑅
[(

𝑅

𝑅0
)

2

− 1] 

𝑀𝑅  𝑃𝑙|𝑟=𝑅 = 𝑃𝑏(𝑅) −
2𝜎

𝑅
− 4𝜇𝑙

�̇�

𝑅
− 4 ∙ 3𝛿𝜇𝑠

�̇�

𝑅2
− 2

𝛿𝐺𝑠

𝑅
[1 − (

𝑅0

𝑅
)

6

] 

𝑆𝐾  𝑃𝑙|𝑟=𝑅 = 𝑃𝑏(𝑅) −
2𝜎

𝑅
− 4𝜇𝑙

�̇�

𝑅
− 4 ∙ 3𝛿𝜇𝑠

�̇�

𝑅2
− 2

𝛿𝐺𝑠

𝑅
[(

𝑅

𝑅0
)

6

− 1] 

 

Upon replacing the above equations in equation 2.1 we obtain a non-linear ordinary 

differential equation with time being the only independent variable which we proceed 

to solve for the microbubble radius 𝑅(𝑡). 
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2.3 Non-dimensional formulation 

We set the initial bubble radius 𝑅0 and √
𝑃𝑏,0

𝜌⁄  as the characteristic scales for 

length and velocity respectively. It follows that the characteristic temporal scale of the 

problem is 

𝑅0

√𝑃𝑏,0
𝜌⁄

 

 

Primed letters denote dimensional variables. When scaled with the above 

characteristic quantities the non-dimensional variables introduced are 

 

𝜏 =
𝑡′√

𝑃0
𝜌⁄

𝑅0
 

𝜔 = 𝜔′𝑓√
𝜌 𝑅0

2

𝑃0
 

𝑅 =
𝑅′

𝑅0
 𝑃 =

𝑃′

𝑃𝑏,0
 

 

 

 

 

Time derivatives are also converted to non-dimensional form. 

𝑑𝑅′

𝑑𝑡′
= √

𝑃0

𝜌

𝑑𝑅

𝑑𝜏
         

𝑑2𝑅′

𝑑𝑡′2 =
𝑃0

𝜌𝑅0

𝑑2𝑅

𝑑𝜏2
 

 

Substitution in equation 2.1 yields  

 

(1 − 𝛭�̇�)�̈�𝑅 + (
3

2
−

𝑀�̇�

2 
) �̇�2

= (1 + 𝛭�̇�)( 𝑃𝑙 − 𝑃𝑠𝑡 − 𝑃𝑎𝑐) + 𝛭𝑅
𝑑

𝑑𝑡
(𝑃𝑙 − 𝑃𝑎𝑐) 

 

2.2 

 

where pressure terms are non-dimensional and scaled with 𝑃𝑏,0, the internal pressure 

corresponding to the equilibrium radius. 
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The non-dimensional liquid pressure on the bubble interface given by the Kelvin-

Voight, Mooney-Rivlin and Skalak constitutive laws is 

 

KV   𝑃𝑙|𝑟=𝑅 = [
1

𝑅3𝛾
−

2

𝑊𝑒

1

𝑅
−

4

𝑅𝑒

�̇�

𝑅
−

4𝑚

𝑅𝑒

�̇�

𝑅2
− 2

3𝐺

𝑅
(𝑅2 − 1)]  

2.3 

MR      𝑃𝑙|𝑟=𝑅 = [
1

𝑅3𝛾
−

2

𝑊𝑒

1

𝑅
−

4

𝑅𝑒

�̇�

𝑅
−

4𝑚

𝑅𝑒

�̇�

𝑅2
− 2

𝐺

𝑅
(1 −

1

𝑅6
)] 

2.4 

SK      𝑃𝑙|𝑟=𝑅 = [
1

𝑅3𝛾
−

2

𝑊𝑒

1

𝑅
−

4

𝑅𝑒

�̇�

𝑅
−

4𝑚

𝑅𝑒

�̇�

𝑅2
− 2

𝐺

𝑅
(𝑅6 − 1)] 

2.5 

 

In conclusion we introduce the dimensionless numbers we encounter throughout the 

study 

𝑅𝑒𝑙 =
𝜌 𝑅0√𝑃𝑏,0

𝜌⁄

𝜇𝑙
  is the Reynolds number of the host liquid comparing inertial 

to viscous forces 

 

𝑊𝑒 =
𝑅0𝑃𝑏,0

𝜎
  is the Weber number comparing inertial forces to the 

membrane’s surface tension 

 

𝑚 =
3 𝜇𝑠𝛿

𝜇𝑙𝑅0
  is the relative fluid to membrane viscosity 

 

𝐺 =
𝛿 𝐺𝑠

𝑅0𝑃𝑏,0
  is the dimensionless shear modulus describing the material’s 

response to shear stress 

 

𝑀 = √
𝑃𝑏,0

𝜌

1

𝑐
  is the Mach number comparing the radial velocity of the bubble 

to the sound speed in the host liquid   
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3 PERTURBATION SOLUTIONS 

3.1 Kelvin-Voight constitutive law application 

3.1.1 Preliminary Considerations 

We focus our attention on oscillations around the equilibrium radius 𝑅0. When 

𝑅𝑑 is the deviation from the initial state we model the oscillating radius as 

 

𝑅′(𝑡) = 𝑅0[1 + 𝑅𝑑(𝑡)] 

 

In dimensionless terms the above equation reads 

  

𝑅(𝜏) = 1 + 𝑅𝑑(𝜏) 

 

Substituting and carrying out the calculations while ignoring terms of fourth and 

higher order equation (2.2) yields  

�̈�𝑑 + 𝑅𝑑 [3𝛾 −
2

𝑊𝑒
+ 12𝐺]

= −𝜂𝑃𝑠𝑡𝑠𝑖𝑛(𝜔𝜏) + 𝜂𝑃𝑠𝑡𝑅𝑑𝑠𝑖𝑛(𝜔𝜏) − 𝜔𝜂𝑀𝑃𝑠𝑡𝑐𝑜𝑠(𝜔𝜏)

+ [�̇�𝑑 [−3𝛾𝑀 +
2

𝑊𝑒
𝑀 − 12𝐺𝑀 −

4

𝑅𝑒
(1 + 𝑚)] + 𝛼1𝑅𝑑

2 −
3

2
�̇�𝑑

2]

+ [�̇�𝑑𝑅𝑑 [(3𝛾 − 1)3𝛾𝑀 − 12𝐺𝑀 +
4

𝑅𝑒
(2 + 3𝑚)]

−
4

𝑅𝑒
𝑀�̈�𝑑(1 + 𝑚) − 𝛼2𝑅𝑑

3 +
3

2
�̇�𝑑

2𝑅𝑑] 

 

 

 

3.1 

 

where dotted letters denote differentiation with respect to the dimensionless time 𝜏 

and the following expressions have been used 

𝛼1 =
9

2
𝛾(𝛾 + 1) −

4

𝑊𝑒
+ 18𝐺 

 

𝛼2 =
𝛾

2
(9𝛾2 + 18𝛾 + 11) −

6

𝑊𝑒
+ 24𝐺 
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We extract the dimensionless natural frequency from equation 3.1 

 

 

𝜔0 = √3𝛾 −
2

𝑊𝑒
+ 12𝐺 

 

3.2 

 

which reverting to dimensional terms reads 

 

𝜔′0 = √(3𝛾𝑃0 −
2𝜎

𝑅0
+ 12

𝛿𝐺𝑠

𝑅0
)

1

𝜌𝑅0
2 

 

We are concerned with the steady state of the motion and thus no initial conditions 

were defined. For this purpose, we set  

 

𝑅𝑑(𝜏 = 0) = 0  

 

 �̇�𝑑(𝜏 = 0) = 0  �̈�𝑑(𝜏 = 0) = 0 
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3.1.2 Ordering 

The dynamics of time dependent changes in a bubble radius that differs slightly 

from the initial equilibrium state can be studied analytically with regular asymptotic 

approximations. For this purpose, terms involved with nonlinearities are assumed to  

be small and need to be scaled with a reference parameter. 

We proceed by assigning each term its respective order of magnitude, where 

the 𝜀  is the reference artificial parameter. The amplitude of the external disturbance 

is set to be of the second order. The resonant response of the bubble radius is of the 

first order. Since we are concerned with the response of the bubble near the main 

resonance, we also set the deviation of the forcing frequency from the linear 

resonance frequency, the detuning parameter, to be of the first order. 

 

 𝜂𝑃𝑠𝑡 = 𝜉 = 𝜀2𝑃 

𝑅𝑑 = 𝜀𝑅𝐷 

(
𝜔0

𝜔
)

2

= 1 + 𝜀𝜔1 

 

3.3 

 

where 𝑃𝑠𝑡 =
𝑃′𝑠𝑡

𝑃𝑏,0
⁄  is the dimensionless static pressure scaled with the internal 

bubble pressure at equilibrium. In the analysis presented herein P is set to 1 without 

any loss in generality as it represents the ordering between pressure disturbance and 

radial pulsations. 

 

A weakly damped case is investigated. The total damping of the system is 

attributed to terms stemming from viscosity and compressibility phenomena. So, for 

damping to be small, both Mach and the inverse of Reynolds numbers need to be of 

the first order.  

 

 𝑀 =  𝜀 𝜇 

1
𝑅𝑒⁄ = 𝜀 𝑟 

 

3.4 
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The 𝑂(𝜀2) forcing term in the ambient pressure leads to an 𝑂(𝜀) change in the 

bubble radius. That is asymptotically small but one order of magnitude larger than the 

forcing inducing the bubble motion since we are in the main resonance area. 

Parameters 𝑅𝐷, 𝜇, 𝑟, 𝜔1 must be of order 1 for the following asymptotic analysis to 

be valid. To simplify our calculations, we introduce the following change in the time 

scale of the problem 

𝑇 = 𝜔𝜏 

 

Lastly, the value assignment of the scaling parameter 𝜀, does not affect the 

final results. As it can be seen each parameter enters the ordinary differential 

equation through its scaled form and consequently the effects of ordering are 

balanced out. Only the initial value of the small parameters affects the results 

obtained. 
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3.1.3 Jordan-Smith method application[1] 

With ordering set and applying the near resonance condition equation (3.1) reads 

 

 
�̈�𝐷 + 𝑅𝐷 = −

𝜀𝑃

𝜔0
2 𝑠𝑖𝑛(𝑇) + 𝜀2 [−

𝜇𝑃

𝜔0
𝑐𝑜𝑠(𝑇) −

𝑃

𝜔0
2 𝜔1𝑠𝑖𝑛(𝑇) +

𝑃𝑅𝑑

𝜔0
2 𝑠𝑖𝑛(𝑇)]

+ 𝜀 {−�̇�𝐷 [𝜇𝜔0 +
4𝑟(1 + 𝑚)

𝜔0
] +

𝛼1𝑅𝐷
2

𝜔0
2 −

3

2
�̇�𝐷

2 − 𝜔1𝑅𝐷]

+  𝜀2 {−�̇�𝐷 [
𝜇𝜔0𝜔1

2
−

2𝑟𝜔1

𝜔0

(1 + 𝑚)] − 4𝑟𝜇�̈�𝐷(1 + 𝑚)

+
�̇�𝐷𝑅𝐷

𝜔0

[(9𝛾2 − 3𝛾)𝜇 − 12𝐺𝜇 + 4𝑟(2 + 3𝑚)] −
𝛼2

𝜔0
2 𝑅𝐷

3

+
3

2
�̇�𝐷

2 𝑅𝐷 +
𝛼1𝑅𝐷

2

𝜔0
2 𝜔1} + 𝑂(𝜀4) 

 

 

 

 

3.5 

 

where dotted variables represent differentiation with respect to the new time scale 𝑇. 

The solution of 3.5 is a function of both 𝜀 and 𝑇. 

 

 

 We assume this form to be a power series expansion of 𝜀 

 

𝑅𝐷(𝜀, 𝛵) = 𝑅𝐷0
(𝑇) + 𝜀𝑅𝐷1

(𝛵) + 𝜀2𝑅𝐷2
(𝑇) + ⋯  3.6 

 

We now substitute the series (3.6) into equation (3.5). In order that the series solution 

satisfies the differential equation (3.5) with accuracy 𝑂(𝜀3) , we balance out the 

coefficients of the same powers of 𝜀, up to the second order. This results in a system 

of recursive second order linear differential equations each one of them yielding a 

solution for 𝑅𝐷𝑖
(𝑇). 
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𝑶(𝜺𝟎) �̈�𝐷0
+ 𝑅𝐷0

= 0 3.7 

𝑶(𝜺𝟏)   
�̈�𝐷1

+ 𝑅𝐷1
= −

𝑃

𝜔0
2 𝑠𝑖𝑛(𝑇) − �̇�𝐷0

[𝜇𝜔0 +
4𝑟

𝜔0

(1 + 𝑚)] +
𝛼1𝑅𝐷0

2

𝜔0
2

−
3

2
�̇�𝐷0

2 − 𝜔1𝑅𝐷0
 

 

3.8 

𝑶(𝜺𝟐) 
�̈�𝐷2

+ 𝑅𝐷2
= −

𝑃

𝜔0
2 𝜔1𝑠𝑖𝑛(𝑇) −

𝜇𝑃

𝜔0
𝑐𝑜𝑠(𝑇) +

𝑃

𝜔0
2 𝑅𝐷0

𝑠𝑖𝑛(𝑇)

− �̇�𝐷0
[
𝜇𝜔0𝜔1

2
−

2𝑟𝜔1

𝜔0

(1 + 𝑚)]

− �̇�𝐷1
[𝜇𝜔0 −

4𝑟

𝜔0

(1 +  𝑚)] − 4𝑟𝜇�̈�𝐷0
(1 + 𝑚) 

            +
𝑅𝐷0

�̇�𝐷0

𝜔0

[(9𝛾2 − 3𝛾)𝜇 − 12𝐺𝜇 + 4𝑟(2 + 3𝑚)] 

−
𝛼2

𝜔0
2 𝑅𝐷0

3 +
𝛼1𝜔1

𝜔0
2 𝑅𝐷0

2 +
2𝛼1

𝜔0
2 𝑅𝐷0

𝑅𝐷1
 

+
3

2
�̇�𝐷0

2 𝑅𝐷0
− 3�̇�𝐷1

�̇�𝐷0
− 𝜔1𝑅𝐷1

 

 

 

 

 

3.9 

 

We are searching for periodic solutions having the period, 2𝜋, of the forcing term. This 

condition reads  

 

𝑅𝐷𝑖
(𝑇 + 2𝜋) = 𝑅𝐷𝑖

(𝛵) ,   𝑖 = 0,1,2, … 

 

The 𝑂(𝜀0)  equation represents the linearized equation. When 𝜀 = 0,  all 

nonlinear terms vanish, and a resonant, simple harmonic, motion with zero damping 

is obtained.  According to the assumption made for the solutions of (3.5), the power 

series expansion (3.6) shows that the solution to the nonlinear equation deviates from 

the zeroth order solution for the linearized case. This indicates that the features of the 

linear motion will be, to some extent, preserved to the weakly non-linear case 

examined for small values of the parameter 𝜀. 

For the resonant case the forcing terms coincide with the solution of the 

homogeneous equation. When such forcing terms are present, a particular solution 

cannot exist in the form 𝐶𝑠𝑖𝑛(𝑇). This leads to terms that are of the form 𝐶𝑇𝑠𝑖𝑛(𝑇) 

which for 𝑇 ≪ 1 might not exhibit abnormal behavior but as 𝑇 approaches infinity at 
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steady state, they become unbounded, and therefore do not satisfy condition (3.7). 

Such terms, known as secular, should consequently be balanced out by the other 

terms present in the above equations for the assumed asymptotic expansion to 

provide valid approximations for all 𝑇. 

Taking the above into consideration we choose an appropriate solution for 

each equation in such a manner that it negates any secular terms present in the next 

order of approximation equation. This defines the solution of the linearized equation 

(3.7) as the one eliminating secular terms in the first order equation (3.8). The same 

process is followed for the next orders of equations.  

The general solution of (3.4) with 𝐴0, 𝐵0 arbitrary constants is 

 

 𝑅𝐷0
= 𝐴0𝑐𝑜𝑠(𝑇) + 𝐵0𝑠𝑖𝑛(𝑇) 3.10 

 

We substitute equation 3.10 into equation 3.8 and then identify the coefficients of 

secular terms by integration. Multiplying the right-hand side of equation 3.8 with 𝑠𝑖𝑛𝑇 

and then integrating with respect to 𝑇, from 0 to 2𝜋, yields an expression for the 𝑠𝑖𝑛𝑇 

coefficients. The terms that survive the integration are the coefficients of 𝑠𝑖𝑛𝑇 since 

the product of its integration is 𝜋  and any other trigonometric function of  𝑇  is 

eliminated when multiplied by 𝑠𝑖𝑛𝑇 and then integrated with respect to 𝑇, from 0 to 

2𝜋 . In the same manner we derive an expression for the 𝑐𝑜𝑠𝛵  coefficients by 

multiplying the right-hand side of equation 3.8 with 𝑐𝑜𝑠𝛵 and carrying out the same 

integration. Equating both resulting expressions to zero provides a system of two 

algebraic equations with the two unknowns being the constants 𝐴0, 𝐵0.  

 

 

−
𝐵0𝜇𝜔0

2 + 𝐴0𝜔0𝜔1 + 4𝐵0𝑟(1 + 𝑚)

𝜔0
= 0 

𝛢0𝜇𝜔0
3 − 𝛣0𝜔0

2𝜔1 − 𝑃 + 4𝛢0𝜔0𝑟(1 + 𝑚)

𝜔0
= 0 
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 Solving the above system of equations yields  

 

𝐴0 =
𝑃

𝜔0
⁄ [𝜇𝜔0

2 + 4𝑟(1 + 𝑚)]

[𝜇𝜔0
2 + 4𝑟(1 + 𝑚)]2 + (𝜔0𝜔1)2

 

 

𝛣0 = −
𝜔1𝑃

[𝜇𝜔0
2 + 4𝑟(1 + 𝑚)]2 + (𝜔0𝜔1)2

 

 

where  𝜇𝜔0 +
4𝑟(1+𝑚)

𝜔0
  is the total damping of the problem due to viscous forces and 

compressibility effects. In  this way we define the 𝑅𝐷0
 solution of the 𝑂(𝜀0) equation 

by eliminating any secularity present in the 𝑂(𝜀1) equation. We proceed by finding 

the general solution of equation (3.5) which now does not contain any secular terms. 

That is 

 

𝑅𝐷1
= 𝐴1𝑐𝑜𝑠(𝑇) + 𝐵1𝑠𝑖𝑛(𝑇) + (

𝛼1

𝜔0
2 −

3

2
)

𝛢0
2 + 𝛣0

2

2
− (

𝛼1

3𝜔0
2 +

1

2
)

𝛢0
2 − 𝛣0

2

2

− (
𝛼1

3𝜔0
2 +

1

2
) 𝐴0𝐵0𝑠𝑖𝑛(2𝑇) 

 

Substituting in (3.9) and carrying out the same integration procedure that was used 

for the 𝑂(𝜀1) equation, we define the 𝐴1, 𝐵1 coefficients, by eliminating secular terms 

in the 𝑂(𝜀2) equation.  

 

The resultant system of equations deriving from the integrations of the right-hand 

side of equation 3.9 which we will solve for 𝐴1, 𝐵1 is  

 

𝛢1[𝜇𝜔0
2 + 4(1 + 𝑚)] − 𝛣1𝜔0𝜔1 = 𝐷1 

 

𝛢1𝜔0𝜔1 + 𝛣1[𝜇𝜔0
2 + 4(1 + 𝑚)] = 𝐷2 
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where 

𝐷1 = −𝜇𝑃 + 4𝜔0𝜇𝑟(1 + 𝑚)𝐴0 −
[𝜇𝜔0

2 + 4𝑟(1 + 𝑚)]𝐵0𝜔1

2
+

𝛢0𝐶(𝐴0
2 + 𝐵0

2)

24𝜔0
3  

𝐷2 =
𝜔1

𝜔0
𝑃 − 4𝜔0𝜇𝑟(1 + 𝑚)𝐵0 −

[𝜇𝜔0
2 + 4𝑟(1 + 𝑚)]𝐴0𝜔1

2
−

𝐵0𝐶(𝐴0
2 + 𝐵0

2)

24𝜔0
3  

𝐶 = 20𝛼1
2 − 30𝛼1𝜔0

2 + 18𝛼2𝜔0
2 + 27𝜔0

4 

 

The resulting expressions for the first order approximation of the amplitude 𝐴1, 𝐵1 are 

 

𝐴1 =
[𝜇𝜔0

2 + 4𝑟(1 + 𝑚)]𝐷2 + 𝐷1𝜔0𝜔1

[𝜇𝜔0
2 + 4𝑟(1 + 𝑚)]2 + (𝜔0𝜔1)2

 

 

𝛣1 =
[𝜇𝜔0

2 + 4𝑟(1 + 𝑚)]𝐷1 + 𝐷2𝜔0𝜔1

[𝜇𝜔0
2 + 4𝑟(1 + 𝑚)]2 + (𝜔0𝜔1)2

 

 

With coefficients identified, the deviation of the bubble radius from the equilibrium 

state is given by  

 

𝑅𝑑 =
𝑅(𝑡) − 𝑅0

𝑅0
= 𝜀𝑅𝐷

= (𝛢0 + 𝜀𝛢1+. . . )𝑐𝑜𝑠(𝑇) + (𝛣0 + 𝜀𝛣1+. . . )𝑠𝑖𝑛(𝑇) + 𝑂(𝜀2)𝑠𝑖𝑛(2𝑇)

+ 𝑂(𝜀2)𝑐𝑜𝑠(2𝑇) 

 

Consequently, the amplitude of the fundamental oscillation, which is a function of the 

main resonance deviation 𝜔1 from the linear resonance frequency, reads as 

  

 𝑅𝑚𝑎𝑥 − 𝑅0

𝑅0
= 𝑅𝑑,𝑚𝑎𝑥 = 𝜀𝑅𝐷,𝑚𝑎𝑥 = 𝜀√(𝛢0 + 𝜀𝛢1)2 + (𝛣0 + 𝜀𝛣1)2 

3.11 

 

 It is the above expression that we shall use in the upcoming paragraphs to 

obtain the resonance curve and pinpoint the frequency in which we get the 

maximum response and its value for a given set of parameters  describing the 

excitation and the physical properties of the system.   
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3.2 Mooney-Rivlin and Skalak constitutive laws 

The same procedure is followed for the remaining two constitutive models for 

the microbubble membrane. Carrying out the calculations for each model results in 

similar equations for each order of 𝜀. The terms that differ for each model and are not 

involved in 𝛼1  and 𝛼2  expressions, do not contribute to identifying the amplitude 

coefficients since they do not exhibit secular behavior. It follows that the equations 

yield the same form for the amplitude of radius deviation from the initial state, with 

the difference being with the 𝛼1, 𝛼2 parameters and more specifically the terms that 

stem from the dimensionless shear stress modulus.  

Mooney Rivlin 

𝛼1 =
9

2
𝛾(𝛾 + 1) −

4

𝑊𝑒
+ 66𝐺 

𝛼2 =
𝛾

2
(9𝛾2 + 18𝛾 + 11) −

6

𝑊𝑒
− 232𝐺 

Skalak 

𝛼1 =
9

2
𝛾(𝛾 + 1) −

4

𝑊𝑒
− 6𝐺 

𝛼2 =
𝛾

2
(9𝛾2 + 18𝛾 + 11) −

6

𝑊𝑒
+ 16𝐺 

 

Regarding the natural frequency of the bubble, since it was assumed in the 

previous sections that the parameters referring to the membrane compressibility and 

softness are respectively 𝐶 = 1 , 𝑏 = 0 , it is deduced that when  

 

𝜇𝑀𝑅 = 3𝛿′𝜇𝑠  and  𝐺𝑀𝑅 = 𝛿′𝐺𝑠  

𝜇𝑆𝐾 = 3𝛿′𝜇𝑠  and  𝐺𝑆𝐾 = 𝛿′𝐺𝑠 

 

for the MR and SK constitutive laws, the same is expression is recovered as in the KV 

case, equation 3.2. We conclude that the microbubble linear resonant frequency is 

independent of the membrane constitutive law. The nonlinear resonance and 

nonlinear behavior, however, differ for each case, when all terms of the problem are 

accounted for. 
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4 NUMERICAL IMPLEMENTATION 

In the following segment a brief presentation of the numerical implementation 

will be given as it was conducted by Pelekasis and Tsiglifis[15]. In their study the 

resonance frequency as well as the scattering cross section of the fundamental and 

higher harmonics were monitored when moderate or large acoustic disturbances 

were applied, for each constitutive model for the bubble membrane. 

The spherosymmetric oscillations of the bubble as they are described by the 

ordinary differential equation 2.2 paired with one of the three constitutive laws 

describing each case of the membrane’s behavior is solved numerically via the explicit 

fourth order Runge-Kutta method which was chosen due to the increased numerical 

stability it provides and its 𝑂(𝛥𝑡4) accuracy. To apply the method the second order 

nonlinear differential equations were converted to systems of first order differential 

equations. The time step of the numerical integration was maintained constant 

throughout the process and its value was selected so that enough steps could fit into 

one period of the induced oscillation, Pelekasis et al. (2004)[13]. The dimensionless 

period of the steady state forced oscillation is given by 𝑇′ = 2 𝜋
𝜔𝑓

⁄  and its 

nondimensional counterpart is  

𝑇 = 2𝜋  when scaled with the driving frequency which defined the characteristic 

temporal scale in their analysis. It follows that a time step 𝛥𝜏 = 0.001 is sufficiently 

small for enough iterations of the Runge-Kutta method in one period[11].  

The dimensionless scattering cross section was calculated numerically through 

the resultant values of the numerical integration of equation 2.2 and  equation 4.1 

 

 

 
𝜎′𝑆𝑐,𝑛 = 4𝜋

∫ (𝑟′𝑃′𝑆𝑐,𝑛)
2𝑡𝑓

0
𝑑𝑡

∫ 𝑃′𝑎𝑐
2 𝑑𝑡

𝑡𝑓

0

 

 

 

4.1 
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and theoretically, when the linear solution of equation 2.2 was considered, as a 

function of the forcing frequency for small amplitudes and a standard set of parameter 

values. 

𝜎′𝑆𝑐

4𝜋𝑅0
2 =

1

[(
𝐹3

𝐹1
)

2

− 1]

2

+ 𝛿𝑡
2

√
1 + 𝑀2

𝐹1
2  , 𝛿𝑡 =

𝐹2

𝐹1
 

 

To compute the numerator integral of equation 4.1  Parseval’s identity was employed. 

 

∫ 𝑓(𝑡)2𝑑𝑡
𝑡𝑓

0

=
𝑡𝑓

2
∑(𝑎𝑛

2

∞

𝑛=1

+ 𝑏𝑛
2) 

 

where 𝑡𝑓  is the time integration duration and 𝑎𝑛, 𝑏𝑛  are the Fourier coefficients of 

𝑓(𝑡) which are calculated through the Fast Fourier Transform algorithm (FFT). When 

applied on the Fourier coefficients of the scattered pressure the zeroth order 

coefficients were omitted since they refer to the time average of the scattered 

pressure which does not contain neither the static pressure nor the acoustic 

disturbance and is approximately zero over the time integration. 

The validity of the numerical implementation was investigated in the case of small 

pressure disturbances where the numerical results were compared against the 

predictions of the linear theory. Results were tested for convergence with respect to 

time step and agreement between the two methods had been established. 

Furthermore, as it was previously stated in the asymptotic solution employed in the 

above paragraphs, when ε<<1 and C=1 the tree constitutive laws predict the same 

dynamic behavior for the microbubble. However, when non-linear perturbations are 

applied the resulting dynamic behavior for each case is quite different. 
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5  FREE GAS BUBBLE OSCILLATIONS IN AN INCOMPRESSIBLE LIQUID 

5.1 Asymptotic method implementation 

We proceed by testing the validity of the asymptotic expansion scheme  used 

in the present study by applying it to cases previously studied and compared the  

convergence of the results. For this purpose, the case that will be used is the one 

referring to a free microbubble immersed into an incompressible fluid subject to an 

acoustic sinusoidal disturbance imposed on the far field, as it was studied by 

Prosperetti[3] analytically, using a time-centered Krylov-Bogolyubov technique, 

Samek[5] with a slightly different approach on the analytical solution using the 

Bogolyubov-Mitropolskiy method and Lauterborn[4] numerically. The resulting 

behavior of the bubble motion as it is described by the asymptotic analysis attempted 

in the present study will be compared to the results obtained by the above authors. 

To this end we adjust the governing equations, kinematic and dynamic 

boundary conditions to describe the problem of the free bubble as it was stated 

above. We begin by neglecting any compressibility effects. For this purpose, the Mach 

number of the flow is set to zero. In addition, any viscous or elastic effects of the 

microbubble shell must be neglected. This is achieved by setting the dimensionless 

shear stress modulus 𝐺  comparing elastic with inertia forces equal to zero. 

Implementing these  changes to the Keller-Miksis[6] model and to the normal stress 

balance, leads to the Rayleigh-Plesset equation describing the spherically symmetric 

oscillations of a bubble  surrounded by an incompressible liquid which reads in 

dimensional form  

 

𝑅′𝑅′̈ +
3

2
�̇�′2 =

1

𝜌𝑙
[𝑃′𝑏(𝑅) −

2𝜎

𝑅′
−

4𝜇𝑙

𝑅′
𝑅′̇ − 𝑃′∞] 

 

where 𝑅 is the instantaneous bubble radius 𝑃′𝑏 is the internal pressure of the bubble 

and 𝑃′∞ is the ambient pressure of the external liquid.  
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The acoustic disturbance imposed on the far field is sinusoidal and as a result 

the ambient pressure oscillates with angular frequency 𝜔𝑓 about its average value 𝑃𝑠𝑡, 

with an amplitude 𝜂 

 

𝑃∞(𝑡) = 𝑃′𝑠𝑡[1 − 𝜂𝑐𝑜𝑠(𝜔𝑓 𝑡)] 

 

The adiabatic assumption for the bubble behavior is retained, thus the internal 

pressure of the bubble can be calculated via the pressure volume equation introduced 

in equation 2.2. The introduction of effective viscosities can also be applied in the case 

of the free bubbles, for the case where thermal and acoustic damping cannot be 

neglected, as it was shown by Prosperetti[3] . The internal pressure of the bubble in 

the equilibrium state is also calculated by equation 2.3. 

The same non-dimensional formulation is followed as it was showed in 

paragraph 2.3. Accounting for the incompressible fluid and the free surface of the 

bubble we eliminate the Mach number and the shear stress modulus respectively. The 

Rayleigh-Plesset equation reads in dimensionless terms  

 

�̈�𝑅 +
3

2
�̇�2 = 𝑃𝑏 −

2

𝑊𝑒

1

𝑅
−

4

𝑅𝑒

�̇�

𝑅
− 𝑃∞ 

 

where the dimensionless numbers 𝑊𝑒, 𝑅𝑒 denoting the effects of surface tension and 

viscous damping respectively are defined in the same manner as in the case of the 

encapsulated bubble. 

Following the same asymptotic expansion scheme for the free bubble, we seek 

the steady state solution for the bubble radius for the near main resonance case. 

Applying small perturbations in the bubble radius around its equilibrium radius and 

carrying out the calculations while ignoring terms of fourth and higher order leads to 

an equation identical to that obtained by Prosperetti[3]. 
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Adjusting to the present study terminology it reads  

 

 �̈�𝑑 + 𝜔0
2𝑅𝑑 = 𝜉𝑐𝑜𝑠(𝜔𝜏) − 𝜉𝑅𝑑𝑐𝑜𝑠(𝜔𝜏) + 𝜉𝑅𝑑

2𝑐𝑜𝑠(𝜔𝜏) + 

[−
3

2
𝑅𝑑

2 −
4

𝑅𝑒
�̇�𝑑 + 𝛼1𝑅𝑑

2] + [
3

2
𝑅𝑑�̇�𝑑

2 − 𝛼2𝑅𝑑
3 +

8

𝑅𝑒
𝑅𝑑�̇�𝑑] + 𝑂(𝜀4)  

 

 

5.1 

where  

𝛼1 =
9

2
𝛾(𝛾 + 1) −

4

𝑊𝑒
 

𝛼2 =
𝛾

2
(9𝛾2 + 18𝛾 + 11) −

6

𝑊𝑒
 

𝜉 = 𝜂𝑃𝑠𝑡 = (1 −
2

𝑊𝑒
) 𝜂 

 

and 𝜔0 is the linear resonance frequency of the bubble in dimensionless terms 

 

𝜔0 = √3𝛾 −
2

𝑊𝑒
 

 

5.2 

 

We proceed by applying the near resonance condition equation 3.4 and 

expanding the deviation from the equilibrium radius 𝑅𝑑 in a power series expansion 

of 𝜀, equation 3.6. Using the same ordering for each of the parameter magnitudes as 

in paragraph 3.1.2 and substituting in equation 5.1 we obtain once again a recursive 

system of second order linear differential equations each one of them yielding a 

solution for 𝑅𝐷𝑖
(𝑇). 
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𝑶(𝜺𝟎) ∶ �̈�𝐷0
+ 𝑅𝐷0

= 0 

 

𝑶(𝜺𝟏) ∶ �̈�𝐷1
+ 𝑅𝐷1

=  
𝑃

𝜔0
2 𝑐𝑜𝑠(𝑇) −

4𝑟

𝜔0
�̇�𝐷0

+
𝛼1𝑅𝐷0

2

𝜔0
2 −

3

2
�̇�𝐷0

2 − 𝜔1𝑅𝐷0
 

 

𝑶(𝜺𝟐) ∶ �̈�𝐷2
+ 𝑅𝐷2

     

=
𝑃

𝜔0
2 𝜔1𝑐𝑜𝑠(𝑇) −

𝑃

𝜔0
2 𝑅𝐷0

𝑐𝑜𝑠(𝑇) − (
2𝑟𝜔1

𝜔0
+

4𝑟

𝜔0
) �̇�𝐷1

+
8𝑟

𝜔0
𝑅𝐷0

�̇�𝐷0

+
3

2
�̇�𝐷0

2 𝑅𝐷0
− 3�̇�𝐷1

�̇�𝐷0
+

𝛼1𝜔1

𝜔0
2 𝑅𝐷0

2 +
2𝛼1

𝜔0
2 𝑅𝐷0

𝑅𝐷1
−

𝛼2

𝜔0
2 𝑅𝐷0

3 − 𝜔1𝑅𝐷1
 

 

Eliminating the secular terms present in the right-hand side of the ODEs in the same 

manner as before, paragraph 3.1.3, allows us to determine the 𝐴𝑖, 𝐵𝑖 coefficients for 

each equation. Carrying out the same procedure yields 

  

𝐴0 =
𝜔1𝑃

(𝜔1𝜔0)2 + 4𝑟2
          𝐵0 =

𝑃
𝜔0

2𝑟

(𝜔1𝜔0)2 + 4𝑟2
 

 

𝐴1 =
𝜔1𝜔0𝐷1 + 2𝐵𝐷2

(𝜔1𝜔0)2 + 4𝑟2
         𝐵1 =

2𝐵𝐷1−𝜔1𝜔0𝐷2

(𝜔1𝜔0)2 + 4𝑟2
 

 

where, 

 

𝐷1 =
𝑟0

3𝑐𝑜𝑠(𝜑0)𝐶

24𝜔0
3 +

𝑃𝜔1 + 𝑟𝜔1𝜔0𝑟0𝑠𝑖𝑛(𝜑0)

𝜔0
 

 

𝐷2 =
𝑟0

3𝑠𝑖𝑛(𝜑0)𝐶

24𝜔0
3 − r𝜔1𝜔0cos(𝜑0) 

 

𝐶 = 20𝛼1
2 − 30𝛼1𝜔0

2 − 18𝛼2𝜔0
2 + 27𝜔0

4 
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Τhe amplitude of the deviation of the bubble radius from the equilibrium state is given 

by  

𝑅𝑚𝑎𝑥 − 𝑅0

𝑅0
= 𝑅𝑑,𝑚𝑎𝑥 = 𝜀𝑅𝐷,𝑚𝑎𝑥 = 𝜀√(𝛢0 + 𝜀𝛢1)2 + (𝛣0 + 𝜀𝛣1)2 

 

This expression is the one we shall use to determine the maximum value of 

the amplitude of the bubble wall occurring for the near main resonance case, as well 

as the values of the frequency in which it appears.  
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5.2 Results and literature review 

We procced by assigning values to the parameters, namely those used by 

Prosperetti,(1974)[3], to cross check results. The calculations are applied to systems of 

moderate damping, in which the bubble equilibrium radius is taken to be 𝑅0 =

10−6𝑚, immersed in water at 20oC. This implies the following properties for water 

𝜌 = 998
𝑘𝑔

𝑚3⁄  , 𝜎 = 0.0725 𝑁
𝑚⁄  , 𝜇 = 0.001

𝑘𝑔
𝑚𝑠⁄  . Furthermore, the 

undisturbed liquid static pressure is taken to be at   𝑃𝑠𝑡 = 1bar. It follows that the 

dimensionless quantities 2 𝑊𝑒⁄ , 2
𝑅𝑒⁄  are taking the following values 0.592 , 0.128 

respectively. Lastly, by letting the amplitude of the disturbance to be 𝜂 = 0.5 the 

“effective pressure amplitude” 𝜉 value is set to be 0.204. 

With parameters set, carrying out the calculations leads to the expression 

yielding the amplitude of the deviation from the initial radius which will be plotted 

versus the normalized frequency to match the graphs it will be compared to 

 

 

Fig5.1 Amplitude of the deviation from initial radius  for a free bubble 𝑅0 = 1𝜇𝑚 in an incompressible liquid. 



Free gas bubble oscillations in an incompressible liquid 

33 

 

Fig5.2 Amplitude of the deviation from initial radius  for a free bubble 𝑅0 = 1𝜇𝑚 in an incompressible 
liquid and as it was obtained analytically (Prosperetti[3]) and numerically (Lauterborn[4]) 

 

 

 

 

 

Fig5.3 Amplitude of the deviation from initial 
radius  for a free bubble 𝑅0 = 1𝜇𝑚 in an 

incompressible liquid, compared results with 
Prosperetti (Samek[5]) 
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It can be seen from figures 5.1, 5.2, 5.3 that the maximum value of the 

nonlinear main resonance response is attained for frequencies lower than the natural 

frequency of the bubble. That frequency shift indicates a “soft spring” behavior ,on 

the average, for the system. A bubble behaves much like a soft spring system because 

on the average the softening on elongation overrides the hardening on compression 

Lauterborn, (1974)[4]. Jumping phenomena, meaning discontinuities in the response 

of the bubble, occur in the numerically attained figures depending on the direction of 

the frequency alteration. 

Figure (5.2) depicting Lauterborn’s results shows two different stable branches 

for the response. As it was observed in his study, the lower one is reached by following 

the bubble’s response to a gradually increasing frequency from lower values to the 

near resonance area while the upper stable branch is reached by attaining a steady 

state solution for a higher frequency and reducing the frequency with small steps so 

that the maximum response is obtained without collapsing to the lower stable branch. 

A hysteresis behavior of the bubble’s response, regarding the stable branch followed, 

is evident from the above statement. On the same graph the expression obtained by 

Prosperetti[3] for the amplitude of the deviation from the initial radius is plotted. There 

is a good agreement between the two studies for the amplitude and frequency values 

and they were both able to capture the foldover in the resonance curve pointing in 

the direction of decreasing frequency values. 

Samek[5] employed the Bogolyubov-Mitropolskiy method to extract the 

analytical solution to the Rayleigh-Plesset equation. His method yielded similar results 

to those of Prosperetti[3] with some overestimation regarding the magnitude of the 

amplitude. It also did not produce any foldover effects for the resonance curve, a 

defining property for nonlinear resonance phenomena.  

The asymptotic scheme employed in the present study produced the results of 

figure 5.1. An overestimation of the resulting amplitude is evident compared to the 

values obtained by Prosperetti[3], Lauterborn[4] and Samek[5]. It was also not able to 

capture the foldover effect in the amplitude curve. This divergence in the amplitude 

values possibly stems from the ordering applied for the amplitude of the external 
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disturbance and the values of the small parameter 𝜀 it produces. Both authors in their 

respective analytical studies assumed an amplitude of the first order 𝜉 ~ 𝛰(𝜀) . The 

amplitude of the deviation from the initial radius of the steady state oscillation to the 

first approximation is given by  

 

𝑟𝑑 =
𝑅𝑚𝑎𝑥 − 𝑅0

𝑅0
=

𝜉

√4𝑏2𝜔2 + (𝜔0
2 − 𝜔2)2

 

 

Since the deviation is set to be of the first order  𝑂(𝜀), the same must be 

applied to its amplitude. However, when the amplitude of the disturbance is scaled 

the way Prosperetti[3] proposed, it is deduced from the above expression that, for the 

main resonance case, where the forcing frequency deviates from the natural 

frequency by a term of the first order, equation 3.2, the resultant amplitude must be 

of order one 𝑂(1), a counterintuitive result going against the initial assumption for 

the ordering of the deviation from the equilibrium radius. However, when the scaling 

for the amplitude of the external disturbance is done the way proposed by the present 

study and 𝜉 ~ 𝛰(𝜀2), then the amplitude resulting from the above expression is in 

agreement with the initial assumption for the deviation. 

It should be noted that the focus of the aforementioned studies expands 

beyond the main resonance to subharmonic and harmonic resonance cases. In the 

present study, however, we restrict our attention to the main resonance , although it 

should be evident from the analysis in paragraph 3.1.2 that it can be applied to 

subharmonic and harmonic resonance cases with some alterations regarding the 

expression used to describe the near resonance restriction. 

Furthermore, upon reducing the amplitude of the pressure disturbance down 

to 𝜂 = 0.2 or 𝜂 = 0.3 and repeating the present analysis and calculation both the 

resonance frequency and maximal radial deviation (𝑅𝑚𝑎𝑥 − 𝑅0) 𝑅0⁄  are recovered 

with significant agreement to the numerical results of Pelekasis and Tsiglifis[15], as it 

will be seen in chapter 6 where a detailed comparison is presented between analytical 

and numerical solutions. Figures 6.2 and 6.8. 
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It is concluded that the asymptotic analysis employed in the present study 

produces valid results, considering the assumption made for the order of the 

disturbance holds true. In the next chapters it will be applied to encapsulated bubbles 

surrounded by a viscoelastic membrane to investigate the main resonance and how it 

is affected by the presence of the shell. 
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6 RESULTS AND DISCUSSION 

In the present section a parametric study is conducted, investigating the effect 

of the microbubble properties and ultrasound characteristics on the response of the 

interface to the imposed disturbance. The amplitude as well as the resonance 

frequency of the fundamental harmonic are monitored when the acoustic disturbance 

is applied for each constitutive law governing the elastic behavior of the shell. The 

parameters used on this section are based on the available literature and are the same 

with those used by Pelekasis and Tsiglifis, (2008) [15] in their numerical study, to which 

the present results will be compared to. The responses presented in the following 

graphs refer to the steady state of the pulsation after transient motion of the bubble 

has elapsed. 

6.1 Properties of the system  

We restrict our investigations to encapsulated microbubbles immersed in 

water. The surrounding water temperature is set at 20o which determines its 

properties. The set of parameters describing the water density, dynamic viscosity and 

sound speed are respectively 

𝜌𝑙 = 998
𝑘𝑔

𝑚3⁄  , 𝜇𝑙 = 0.001
𝑘𝑔

𝑚𝑠⁄  , 𝑐𝑙 = 1500 𝑚
𝑠⁄   

 

    In the absence of any reliable data on membrane porosity, the interfacial 

tension is set to the average of the gas membrane and liquid-membrane tensions. It 

is almost the same as the gas-host fluid interfacial tension for the case of a shell with 

very small thickness. 𝜎 = 0.072
𝑘𝑔

𝑠2⁄  

Based on the experimental data Pelekasis and Tsiglifis[15] studied bubbles of 

radius 𝑅0 = 3𝜇𝑚  with a characteristic shell thickness 𝛿 ≈ 15𝑛𝑚 . The shear stress 

modulus 𝐺𝑠  was  limited to values between 35 and 105 𝑀𝑃𝑎  and the membrane 

dynamic viscosity 𝜇𝑠 to values ranging from 0.6 to 1.6 𝑘𝑔/𝑚𝑠. As it was stated before 
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parameters 𝑏  and 𝐶  were set to 0  and 1  for the MR and SK constitutive laws 

respectively. 

6.2 Compressibility effects on the free bubble case 

In the present section the host liquid is taken to be slightly compressible. 

Although the compressibility phenomena are taken to be small, 𝑀 → 𝑂(𝜀), the effects 

on the bubble’s response are observed and worth noted. We begin by observing the 

case of a free gas bubble of initial radius 𝑅0 = 1𝜇𝑚. As it can be seen in figures 6.1 

and 6.2 when the liquid is compressible the maximum response 𝑅𝑑,𝑚𝑎𝑥  is reduced 

significantly especially when then amplitude of the disturbance 𝜂  is increased. An 

increasing Mach number acts as an additional damping factor, thus, leading to 

diminishing values of the bubble’s amplitude. The natural frequency is still given by 

equation 5.2 for the free bubble since any compressibility phenomena do not affect 

the linear part of the problem from which the natural frequency stems from. The soft 

spring behavior of the system is retained in the compressible case, as it can be seen 

from the graphs, and the resonance occurs in lower than the natural frequencies due 

to the nonlinearities of the governing equations. 
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Fig.6.1 Response of a free bubble of initial radius R0=1μm insonated by an external 

sinusoidal disturbance, immersed in incompressible liquid 

Fig.6.2 Response of a free bubble of initial radius R0=1μm insonated by an external 

sinusoidal disturbance, immersed in a slightly compressible liquid  
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6.3 Encapsulated microbubbles 

The response of encapsulated bubbles is examined next. As it was stated 

before, the compressibility effects add to the viscous damping of the problem. The 

response of an encapsulated bubble will be further attenuated due to the viscoelastic 

behavior of the membrane leading to lower amplitude values. The natural frequency 

of the problem is given by equation 3.2, and it is the same for all three constitutive 

laws. The general response, however, is heavily dependent on the law used, as it will 

be seen  in the following paragraphs.  

Plotting the amplitude of the fundamental mode of the oscillation up to the 

first approximation, equation 3.11, over the dimensional frequency yields the 

response curves of the bubble for different values of the disturbance amplitude. Three 

graphs have been produced one for each constitutive law used to describe the 

membrane.  
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6.3.1 Kelvin-Voight 

Fig 6.3 Response of a KV membrane subject to a disturbance of increasing amplitude 

 

The Kelvin – Voight constitutive law corresponds to the linear representation 

of the membrane’s stress strain behavior and it is applicable for small displacements. 

Even though it ignores the nonlinearity of the material, a shift ,in lower than the 

natural frequencies, is observed in the main resonance case and it is attributed solely 

to the increasing effect of inertia with nonlinearity which also decreases resonance 

frequency, Pelekasis Tsiglifis (2008) [15]. The KV shell applies a moderate resistance on 

the motion of the wall compared to the other two constitutive laws but high enough 

to attenuate the response dramatically when compared to the free bubble case. Due 

to the system’s nonlinear behavior and the shift of frequency when a KV membrane is 

driven below resonance it can attain its resonance point with an increased amplitude 

while the initial radius of the shell remains the same. The  driving regions above the 

resonant frequency, however, are not able to produce a strong response signal and a 

different choice of forcing frequency  must be made in order attain the resonant state. 
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6.3.2 Mooney-Rivlin 

Fig 6.4 Response of an MR membrane subject to a disturbance of increasing amplitude 

The Mooney – Rivlin constitutive law corresponds to a strain-softening 

nonlinear material, meaning a decreasing strain-stress slope is observed as 

deformation becomes larger. Parameter b which controls the softness of the 

membrane has been set to zero for the purposes of the present study. At first glance 

it is observed that the responses for every value of the external disturbance are moved 

to lower frequencies as it is to be expected from a strain-softening material. The 

restoring forces of the bubble become progressively weaker as the displacement from 

the equilibrium state grows to higher values. This leads to an enhancement of radial 

displacement and velocity that is larger than expected based solely on the amplitude 

of the acoustic disturbance.  As the amplitude of the disturbance increases, resonance 

frequency decreases and the nonlinear resonance occurs at decreasing values. If the 

bubble is driven below resonance for small amplitudes of the disturbance it can hit its 

resonant point with a gradual increase of the external disturbance. However, when it 

is driven above resonance due to the strain-softening behavior of the shell and the 

shift to lower frequencies resonance cannot be achieved. 
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6.3.3 Skalak 

Fig 6.5 Response of an SK membrane subject to a disturbance of increasing amplitude 

The Skalak constitutive law refers to a strain-hardening nonlinear material 

whose stress-strain slope increases as the displacement becomes bigger.  Parameter 

C which denotes the area compressibility, i.e., stiffness for the shell material has been 

set to one for the present study, referring to a relatively strain-hardening material 

allowing for area compressibility phenomena on the membrane. It can be seen from 

the above graph that the resonance frequency of an SK material increases as the 

amplitude of the disturbance grows higher. The more intense the strain hardening 

behavior is the more evident is the shift. Hence, when a bubble is driven below the 

resonance frequency there is a possibility that main resonance will never occur due to 

this effect. However, if the bubble is driven at frequencies above the natural main 

resonance can be achieved, by increasing the amplitude of the disturbance, at higher 

frequencies if not achieved at lower values and a strong signal is observed while the 

nonlinear resonances occur. Due to the effective hardening of SK materials with 

increasing deformation it is observed that the membrane displacement and velocity 

at resonance values increase very mildly, as the higher the amplitude becomes owning 

to the additional resistance the SK membrane contributes to the system. 
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6.3.4 Remarks on the three constitutive laws. 

From a qualitative point of view it can be deduced by comparing the peaks of 

the graphs that the resonant response is dependent on the law used to describe the 

membrane’s material surrounding the bubble. Owning to its strain softening behavior 

an MR membrane is easier to expand and allows for larger deformations, whereas the 

opposite occurs for the strain-hardening case described by the SK constitutive law. 

The KV model which ignores any nonlinearities in the material’s behavior lies in middle 

grounds and as it was stated, is valid for small deformations. 

According to Barthes-Biesel et al. (2002)[12]  et al in the asymptotic limit of small 

deformations all viscoelastic laws (KV, MR ,SK) reduce to Hooke’s law which describes 

a linear stress-strain behavior. However, at large deformations the stress-strain 

relation is heavily dependent on the nature of the membrane constitutive law. This 

statement is in agreements with the results obtained in the present study. By 

comparing the graphs for each case,  it can be observed that at lower values of the 

parameter 𝜂 , controlling the amplitude of the imposed disturbance, the three laws 

tend to produce similar results regarding the magnitude of the amplitude as well as 

the value of the frequency where the nonlinear resonance occurs. However, at higher 

values of the pressure disturbance, the tree laws exhibit dissimilar behavior and adopt 

their characteristic properties. 

In other words, SK membranes impose additional stiffness to the protective 

shell during expansion and consequently smaller excursions from sphericity, whereas 

the shell becomes softer during compression leading to larger excursions from 

sphericity. The overall effect during a period of the pulsation is a smaller effective 

bubble radius which generates a larger resonance frequency in comparison with the 

regime of infinitesimal disturbances. Thus, the resonant frequency obtained at higher 

disturbance amplitudes, where the nonlinear effects are experienced intensively, is 

larger than the KV and MR shells with the latter shell exhibiting the highest values of 

radial excursion during expansion due to the progressive softening of the membrane 

that allows for larger deformations.  
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Results regarding the resonant frequencies for each case exhibit a similar 

trend. For all three constitutive laws the natural frequency is the same, as it stems 

from the linear part of the equation of motion and thus the defining nonlinearities of 

each law do not contribute to its value. It is given by equation 3.2 and it increases as 

the elasticity of the material, described by the dimensionless number G, is increased. 

As the amplitude of the disturbance increases, the extend of the nonlinearity increases 

and resonance occurs in different values than the natural frequency. This is a known 

property of nonlinear oscillating systems and it is evident throughout the study. This 

deviation from linearity is observed as a decrease in resonant frequency for the KV 

and MR models, a slight one for the linear KV constitutive law and a much more 

noticeable for the MR describing the strain softening materials. However, when the 

SK constitutive law is employed to model the shell, a shift towards higher values is 

observed for the resonant frequency indicating a progressive stiffening of the 

membrane. 

Once again, this effect is more evident as the amplitude of the disturbance 

grows higher and the nonlinear behavior of the materials exhibits its full effect. At 

lower values the three laws tend to produce similar results close to the linearized case 

as it is described by the KV constitutive law, a behavior in agreement with the Pelekasis 

and Tsiglifis, (2008) [15] simulations.  

It should be lastly stressed that the main resonance frequency also depends 

on the initial radius of the bubble. The linear resonance frequency  depends on the 

bubble size and it decreases as the latter grows higher. As a result, for strain-softening 

materials, whose resonance frequency leans towards lower values, when driven 

below resonance, a strong signal is acquired for smaller values of the external 

disturbance for higher initial radii. However, when a strain hardening material is put 

to the same test the possibility of resonance is eliminated since the resonant 

frequency increases with the amplitude of the disturbance. An excitation above 

resonance is needed to produce the opposite results regarding the two types of 

membranes. 
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6.3.5 Comparative presentation of the free and encapsulated bubbles 

In this section we compare the responses of free and encapsulated bubbles. In 

both cases bubbles of initial radii 𝑅0 = 3𝜇𝑚 immersed in the same host liquid, whose 

properties are stated in the beginning of the chapter, have been studied. The 

amplitude of the disturbance has been selected so that both responses are of the 

same magnitude for the results to be comparable and high enough so that the 

membrane of the encapsulated bubbles exhibits its full nonlinear behavior. For the 

free bubble case this corresponds to an external disturbance of amplitude 𝜂 = 0.1, 

whereas for the encapsulated case a much higher value has been used to achieve 

similar responses, 𝜂 = 2. 

 

Fig 6.6  Amplitude response of a free bubble immersed in a slightly compressible liquid. 
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Fig 6.7 Amplitude response of encapsulated bubbles described by KV, MR and SK constitutive 

laws immersed in a slightly compressible liquid. 

The free bubble eigenfrequency, given by equation 5.2, solely depends on the 

properties of the host liquid and the interface forming between it and the gas. For the 

encapsulated bubble an additional term rises in the eigenfrequency, equation 3.2, 

accounting for the membrane elasticity and, thus, it increases for more elastic 

materials without changing the liquid’s properties. By comparing their expressions, it 

is evident that the natural frequency of the free bubble lies at much lower values. 

A shift in resonance frequency is observed in both cases due to the heavily 

nonlinear nature of the governing equations of bubble dynamics. Resonance for free 

bubble systems occurs in lower than the natural frequencies, thus indicating a soft 

spring behavior where the softening on elongation overrides the hardening on 

compression Pelekasis and Tsiglifis, (2008) [15]. The exact value of frequency where the 

nonlinear resonance occurs depends on the amplitude of the oscillation and shifts to 

lower values the more intense the oscillations become. The same nonlinear behavior 

is observed in the encapsulated bubbles. However, the stress-strain relation of the 

material might impose additional nonlinear terms to the problem depending on the 

constitutive law used to describe it. For the KV case a shift in lower frequencies is 

observed and a much more noticeable one for an MR membrane owing  to its strain-
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softening behavior. On the other hand, the strain-hardening membrane described by 

the SK constitutive law attains resonance at higher than the natural frequencies.  

Regarding the amplitude of the response, it is evident from figures 6.6, 6.7 that 

it is heavily attenuated by the presence of an encapsulating membrane. Regardless of 

the constitutive law used to describe the material’s viscoelastic behavior, a shell, 

which may be infinitesimally small compared to the initial radius of the bubble, 

provides a considerable amount of viscous damping to the problem. The stiffer the 

membrane is the higher the additional damping of the shell is. The response is so 

heavily diminished by the shell, that it was necessary the amplitude of the free 

response to be lower by a factor of ten to produce similar results even for the strain-

softening case which allows for larger deformations. 
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6.3.6 Numerical results and comparison to analytical data obtained by 
the asymptotic expansion. 

In the following paragraph a presentation of the results obtained by Pelekasis 

and Tsiglifis[15] in their respective study, concerning the free bubble as well as the 

encapsulated one obeying the KV, MR, SK constitutive laws is made . The numerical 

procedure followed, was exhibited in chapter 4. Figures of the study have been 

reproduced to illustrate the amplitude of the deviation from the equilibrium radius 

over the dimensional frequency to match the present study terminology, while 

ignoring any scattering effects for the pressure which played an important role in their 

paper. In both studies the same properties for the host liquid mentioned in the 

beginning of the chapter have been used and bubbles of the same initial radius have 

been employed for the results to be on common ground. 

Fig 6.8 Numerical response of a free bubble immersed in a slightly compressible liquid for 

increasing values of the disturbance amplitude. 
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Fig 6.9 Numerical response of a KV bubble immersed in a slightly compressible liquid for 

increasing values of the disturbance amplitude. 

 

Fig 6.10 Numerical response of an MR bubble immersed in a slightly compressible liquid for 

increasing values of the disturbance amplitude. 



Results and discussion 

51 

 

Fig 6.11 Numerical response of an SK bubble immersed in a slightly compressible liquid for 

increasing values of the disturbance amplitude. 

 

 Figure 6.8 is the numerical equivalent of figure 6.2 for the free bubble 

presented in the beginning of the present chapter while figures 6.9 ,6.10, 6.11 are 

the numerical equivalent of figures 6.3, 6.4 and 6.5 respectively, presented in the 

preceding paragraphs where the behavior of the material was investigated.  

A more detailed comparison of the results obtained by both methods is 

presented in the following tables for each case. 
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Free Gas Bubble    R0 = 1μm, incompressible , V0 = 4.72MHz 

Analytical Numerical 

η Rd,max Vres (MHz) Rd,max Vres  (MHz) 
0.1 0.08506 4.68 0.08944 4.6 

0.2 0.18017 4.66 0.17889 4.6 

0.3 0.31048 4.66 0.28991 4.4 

0.4 0.51463 4.67 0.38424 4.4 

0.5 0.8398 4.68 0.52037 4.2 

 

Kelvin-Voight  R0 = 3μm , v0 = 2.66 MHz 

Analytical Numerical 

η Rd,max Vres (MHz) Rd,max Vres  (MHz) 
0.5 0.06727 2.59 0.06634 2.6 

1 0.13399 2.61 0.1281 2.6 

1.5 0.20048 2.63 0.1843 2.6 

2 0.26891 2.66 0.2314 2.7 

 

Mooney-Rivlin R0 = 3μm , v0 = 2.66 MHz 

Analytical Numerical 

η Rd,max Vres (MHz) Rd,max Vres  (MHz) 
0.5 0.06819 2.58 0.07212 2.6 

1 0.14354 2.55 0.15464 2.5 

1.5 0.24013 2.56 0.25921 2.4 

2 0.38081 2.57 0.37183 2.3 

 

Skalak R0 = 3μm , v0 = 2.66 MHz 

Analytical Numerical 

η Rd,max Vres (MHz) Rd,max Vres  (MHz) 

0.5 0.06722 2.6 0.0636 2.6 

1 0.13378 2.62 0.11715 2.6 

1.5 0.20093 2.65 0.1605 2.6 

2 0.27335 2.68 0.19652 2.7 

 

Table 1 Amplitude and resonance frequency comparison for analytically and numerically 

obtained results. 
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Comparing results obtained in both studies, there seems to be a satisfactory 

agreement especially for the lower values of the parameter 𝜂  which controls the 

amplitude of the disturbance. An overall overestimation of values is evident from 

Table 1 for increasing values of amplitude, where the results are compared side by 

side for each case. Regarding the resonance frequencies, the numerical results exhibit 

a wider range of values where the nonlinear resonance occurs while the analytical 

results tend to place the resonant value to a small range close to the natural frequency 

of the case studied. 

The validity of an asymptotic analysis lies on nonlinear terms being relatively 

small. As the disturbance grows larger it imposes greater deformations to the bubble 

wall which leads to higher values of the amplitude. The nonlinearities present in the 

governing equations of bubble dynamics contain terms of acceleration, velocity and 

displacement of the bubble wall which grow larger as the external disturbance 

increases. So, as the nonlinear terms are described less accurately by small parameters 

the results obtained analytically tend to become less valid. 

Comparing the graphs, a good agreement is found from a quantitative point of 

view. The method was able to capture the shift in frequencies of the nonlinear 

resonance for all the three constitutive laws and was able to describe to the strain-

softening and strain hardening behavior of the nonlinear materials described by them,  

while the amplitudes of the bubble wall all lie in the same order of magnitude. 

However, when the numerical free bubble and, more noticeably, Mooney – Rivlin  

graphs are observed, a steeper slope appears when approaching the resonant point 

from lower frequencies for the higher values of the external disturbance which the 

analytical solution was not able to portray. This is due to the restricted range of 

resonant frequencies provided for these high values of sound amplitude by the 

asymptotic analysis employed for the present study. The near resonance case used, 

equation 3.4, describes the shift from the linear resonance frequency for small values 

of the parameter 𝜀, thus any results obtained are restricted to small deviations. 
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Concluding, the divergence from the numerical results lies within acceptable 

limits. A more thorough study of the ordering of the small parameters involved in the 

problem could lead to even more accurate results even for the larger amplitude of the 

external disturbance while accounting for the remarks made in paragraph 5.2 

regarding the order of the amplitude of the disturbance. 
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7 CONCLUSIONS – SUGGESTIONS FOR FURTHER STUDY 

In the present study, the steady state of spherosymmetric volume oscillations 

of a gas bubble, free and encapsulated, in the main resonance area was investigated, 

through means of asymptotic expansions. The bubble was immersed in a Newtonian, 

slightly compressible liquid, free of any pre-stresses at equilibrium, when the full 

effects of viscosity were considered. To this end, the Keller-Miksis[6] model was 

employed to describe the oscillatory motion of the bubble’s interface. For the 

encapsulated bubbles three constitutive laws were used, namely the Kelvin-Voight 

(KV), the Mooney-Rivlin and the Skalak (SK) models are used, pertaining  to an almost 

linear for small displacements, strain-softening, and strain-hardening behavior of the 

material, respectively. 

The asymptotic analysis followed the procedure that is suggested by Jordan 

and Smith[1] in their book. For the asymptotic scheme to hold valid results the 

nonlinear terms ought to be small. For this purpose, we assume that compressibility 

effects and viscous damping  are small and more specifically of the first order. The 

bubble oscillates around its equilibrium radius and this deviation was also considered 

small. Lastly, the bubble was subject to an acoustic disturbance the amplitude of 

which was taken to be small, namely of the second order.  

The amplitude of the fundamental oscillation of the bubble’ deviation from the 

initial radius was extracted as a function of the detuning parameter, modified to be a 

function of the forcing frequency and plotted in frequency diagrams. Results 

concerning the free bubble case were compared to previous literature and numerical 

simulations. Despite discrepancies in the ordering of the disturbance amplitude, a 

quantitative agreement was found for relatively lower values of the sound amplitude. 

A shift of frequency towards lower values was observed for the nonlinear resonance 

indicating a soft spring behavior for the system. When the analytical results were 

compared to numerically obtained results by Pelekasis and Tsiglifis[15] the agreement 

was satisfactory for free and encapsulated bubbles. 
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The Kelvin-Voight constitutive law was used to describe an almost linear stress-

strain behavior for small radial displacements. The response is heavily attenuated due 

to the elastic behavior of the membrane and a shift towards lower frequencies is 

observed for the non-linear resonance. The Mooney-Rivlin constitutive law is used to 

describe a strain softening stress-strain behavior due to the progressive thinning of 

the shell during expansion. Due to the strain softening nature of the membrane, as 

the disturbance amplitude increases, the bubble response increases 

disproportionately when compared to the linear predictions provided by the Kelvin-

Voight model. Results have shown that, as the amplitude of the disturbance increases 

the nonlinear resonance occurs at lower frequencies, below the value of the linear 

resonance frequency. The deviation from the initial radius is larger during expansion 

and smaller during compression leading to a smaller effective radius during the span 

of one period of motion for Kelvin - Voight and Mooney - Rivlin membranes. However, 

due to the strain softening nature of the Mooney - Rivlin membranes the effective 

radius is larger and a more noticeable shift in frequencies is observed. Lastly, the 

Skalak constitutive law was used to model the strain-hardening behavior of the shell 

due to the almost area incompressible nature of the membrane. Unlike the two 

previous laws SK membranes exhibit larger excursions from sphericity during 

compression and smaller during expansion resulting to a smaller effective radius 

during a period and a shift towards higher frequencies was observed with an 

increasing amplitude. Due to the strain hardening nature of the shell, the attenuation 

of the amplitude was more noticeable with as the disturbance grew larger. On a 

comparative scale, the Mooney-Rivlin membranes give rise to the highest response 

amplitudes, the Skalak membranes the lowest while the Kelvin-Voight model 

predictions lie on middle grounds. 

The results obtained analytically were compared to numerically attained 

values for the amplitude and resonance frequency. Regarding the amplitude values, a 

satisfactory agreement was found especially for lower values of the external 

disturbance. With more intense forcing a slight overestimation was observed was 

observed for the Kelvin-Voight and Mooney-Rivlin models and a more noticeable one 

for the Skalak law. The values of the resonance frequency were generally close to the 
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numerical ones, especially for the smaller values of the sound amplitude. For the free 

bubble and the MR membrane, as the disturbance increases, the asymptotic 

expansion tends to produce results retaining the characteristic decrease of the 

frequency but contained to a smaller range of values around the linear resonance 

frequency.  

It was pointed out that a better agreement of results was expected for smaller 

values of the acoustic disturbance amplitude. As the amplitude grows higher, the 

deformations applied in the bubble become larger and the nonlinear parameters 

cannot be described by small parameters properly. The ordering of the variables 

involved, as it was presented in paragraph 3.1.2, breaks down and the results obtained 

become less valid as the disturbance becomes more and more intense. 

It can be deduced by the present study that a lot of phenomena occur during 

the oscillations in the presence of an acoustic disturbance even when they are 

considered spherosymmetric and the only direction investigated is the radial one. On 

the contrary a bubble can execute volume, shape oscillations or a combination of 

both, which makes the problem a lot more complicated. Constitutive laws used to 

describe the membrane’s behavior play an important role to the response. Further 

study could implement more cases regarding the values of parameters 𝑏  and 𝐶 

denoting the membrane softness for the Mooney-Rivlin law and membrane 

compressibility for the Skalak law respectively. As it was stated in paragraph 2.2.2 

parameter 𝑏 lies in the range between 0 and 1 and the lower its value is the softer the 

membrane. Parameter 𝐶 dictates area incompressibility and the higher its value is the 

more intense the strain hardening behavior of the shell is. Different kinds of material 

can be examined by simply choosing different values for the above parameters. 

Pelekasis and Tsiglifis, (2011)[16] performed such an analysis in the context of forced 

oscillations of a free bubble with a viscoelastic coating and predicted eigenfrequencies 

of shape modes as well as stability criteria. Moreover, the latter analytical solution can 

be extended to include residual stresses on the shell and investigate how they affect 

the bubble response. Such a study is in progress and associates residual stresses with 

the compression only effect; Vlachomitrou & Pelekasis (2021). The effect of scattering 
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of pressure on the shell of the bubble could also be studied once an expression of the 

bubble instantaneous radius is obtained. Usually, such oscillatory motions of bubbles 

occur in ultrasound medical procedures where the host liquid is not infinite. A very 

important subject for future study pertains to the development of a 

theoretical/numerical approach to study the effect nearby boundaries in the flow on 

the backscattered pressure. Existing studies focus on standard free bubbles, Oguz & 

Prosperetti (1998)[10], or study coated microbubbles in the absence of nearby 

boundaries, Efthymiou et al. (2017)[18]. In a more recent study Vlachomitrou and 

Pelekasis, (2021)[21],[22], introduced the effect of an interacting solid boundary without 

focusing on the resulting resonance frequencies. Such a preliminary study was 

conducted in the context of the Ms Thesis by Chrysostomidis (2018)[19] using the 

boundary element methodology and an extended study is in progress in order to 

account for shape oscillations using the finite element methodology, Vlachomitrou & 

Pelekasis (2021)[23],[24].  Lastly, a more detailed approach regarding the ordering of 

parameters and the asymptotic scheme used could be done in a way that the 

approximate analytical solution provides more accurate results for higher values of 

the imposed disturbance.      
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