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Abstract 

The static response of contrast agent microbubbles is investigated by means of 
theoretical and numerical formulation. The shell coating is biocompatible and provides 
mechanical strength, thus renders the microbubbles as excellent enhancers in medical imaging 
and drug delivery vectors (in vivo). Characterization of shell parameters, namely stretching 
and bending moduli, is of great importance for the above applications. Two major families of 
coated microbubbles are normally employed, namely those coated by polymeric and 
phospholipid shells. The former type of shells is characterized by larger elasticity modulus in 
comparison with phospholipid shells. Lately, the atomic force microscope (AFM) has emerged 
as a powerful tool for estimation of the above properties through force-deformation curves. In 
this context, one of the major targets of the present doctoral dissertation is the modelling of the 
static response of coated microbubbles as they are compressed by the AFM cantilever. In 
addition, a methodology is proposed for the estimation of the elastic properties for both types 
of shells. 

Two theoretical and numerical models have been developed in order to describe the 
contact between the cantilever and the shell. The cantilever is considered as a flat and rigid 
surface, while the shell as an elastic membrane and the encapsulated gas is treated as 
compressible. In the first model is a simple representation of the loading, which is assumed as 
a point at the end of the contact line, while in the second the shell is loaded by the disjoining 
pressure as a result of the thinning of the liquid phase between the shell and the cantilever. 
The degree of thinning describes the resulting force between the two surfaces, attraction or 
repulsion, depending on their relevant position. In any case, the normal and tangential force 
balances along with the isothermal compression are solved via finite elements. The elastic 
tensions are described by appropriate constitutive laws, the disjoining pressure by the 
derivative of an adhesive potential and the deformations are considered as axisymmetric. 
Benchmark calculations against analytical results verify the validity of modeling. The results 
of each model are presented in force-deformation curves, where the possibility of buckling 
near the contact is investigated. In the first model, the response is initially linear (Reissner 
regime) and when buckling takes place (Pogorelov regime) the response in non-linear curved 
downwards. The linear solution is still an option after the buckling point, but has higher 
energy than the buckling solution. A third non-linear curved upwards regime is detected in 
relative high values of deformation in the post-buckling solution, as a result of significant 
increase of the internal pressure in comparison with shell rigidity. The above regimes are 
recovered also in the intermolecular forces model. In both models, the dimensionless bending 
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stiffness, b̂k , which defines the relative importance of bending rigidity in comparison with 
stretching, specify the position of the bifurcation point. Microbubbles coated with polymer 
have usually a relative small dimensionless bending resistance 5ˆ ~ 10bk − , which explains the 
buckling behavior of experimental AFM force-deformation curves, while in shell covered with 
lipid the dimensionless bending resistance is higher 3ˆ ~ 10bk − , thus buckling is not the 
energetically favorable solution, because the resistance to bending is high. In addition, when 
adhesion is strong, the local buckling is translated to higher values of force and deformation or 
in extreme cases postponed, because the shell is in significant attraction with the cantilever, 
thus tensile tensions are developed which prevent buckling. The internal pressure tends to 
increase when surface tension is accounted for, while the opposite happens when the shell has 
residual compressive tensions, which also tend to low the buckling point. The above aspects 
are studied via parametric analysis. 

In addition, upon appropriate modification of the equilibrium equations, a similar study 
is also conducted for free microbubbles, which are not covered with elastic material and they 
response is governed by the surface tension and the internal pressure. In this case, buckling 
was not detected, as it was expected, and their response in force-deformation curve is almost 
quadratic. This study is usufull for nano-bubbles, which usually are not covered. 

Employing the analytical equations for the linear and non-linear regimes, Reissner and 
Pogorelov, respectively, on the experimental force-deformation curves of microbubbles coated 
with polymer the Young modulus and the shell thickness are calculated simultaneously. The 
results are in very good agreement with the experimental estimates. In addition, the force –
deformation curves of microbubbles covered with lipid monolayer are almost linear and in 
high values of deformation a regime dominated by the gas pressure is detected. Combination 
of Reissner equation with a Lulevich et al and Shanahan analytical results can provide the area 
dilatation and the bending moduli. Perfoming simulations with both models the experimental 
response is recovered. 

The second problem that the present thesis studies is the buckling of the above 
microbubbles subject to a uniform and normal static load in order to construct the bifurcation 
diagrams for both types of materials. The same equations are solved, but the loading is known 
and it is applied across the generative curve. Benchmark calculations against similar numerical 
calculations and recovering the theoretical buckling load verify the validity of modeling. 

In this problem, as the pressure increases, the shell is compressed, but remains spherical, 
which is considered as the basic solution. When the load reaches the buckling threshold, the 
jacobian matrix has one more unstable eigenvalue, where disturbing the spherical shape with 
the corresponding eigenvector, the buckling curve emerges, with shapes that are asymmetric 
or symmetric with respect to the equator. 

In polymers, when the first instability is dominated by an asymmetric eigenmode, the 
solution evolves only subcritically. The second instability on the spherical solution is 
dominated by a symmetric mode and evolves transcritically. The shapes corresponding to 
supercritical symmetric branch are prolate, while the shapes of the subcritical symmetric 
branch are oblate. On the contrary, when the first instability is dominated by symmetric mode 
is still a transcritical bifurcation, but the second instability on the sphere, characterized by an 
asymmetric mode; it was not possible to evolve. However, the subcritical symmetric branch 
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very soon exhibits a new unstable eigenvalue, which lead to an asymmetric branch. In any 
case, the subrcritical branches as evolve exhibit a limit point, which turns the solution to loads, 
which are higher than the buckling threshold. In the regime after the limit point, each branch 
has one less unstable eigenvalue in comparison with the bifurcation point and additionally 
their total energy is less than the sphere. The volume is reduced significantly and the poles 
tend to form a contact zone. In the microbubbles covered with phospholipid, the above trend is 
similar, but when the first instability is dominated by symmetric shapes, the asymmetric 
solution is not evolving from the sphere, but either from the symmetric branch. 

In the context of the present thesis, parametric analysis was contacted in order to 
understand how the dimensionless bending modulus, b̂k , defines the shape of the first 

instability. The first instability for a microbubble with a relative small b̂k  is symmetric with 
prolate and oblate shapes, but as the dimensionless bending stiffness decreases the first 
instability is asymmetric, thus forming one dimple of indentation in order to relax the 
compressive tensions. Decreasing further the b̂k  one dimple is not enough for the relaxation of 
the tensions, thus a second dimple is formed. It should pointed out, that when both post 
buckling solutions coexist in the regime of relative small volumes and before the contact zone, 
the asymmetric is always the solution with the lower energy. In addition, in shell covered with 
lipid, where the gas compression is important in comparison with the elasticity, the limit point 
of the subcritical branch leads to sharp change of the required loading, without significant 
reduction of the volume, while in polymers after the limit point the volume must be reduced 
significantly in order to form a contact line. 
  



ix 
 

ΑΡΙΘΜΗΤΙΚΗ & ΘΕΩΡΗΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΣΤΑΤΙΚΗΣ ΑΠΟΚΡΙΣΗΣ 
ΜΙΚΡΟΦΥΣΑΛΙΔΩΝ ΜΕ ΕΛΑΣΤΙΚΟ ΚΕΛΥΦΟΣ ΣΕ ΟΜΟΙΟΜΟΡΦΑ ΚΑΙ 

ΚΑΤΑΝΕΜΗΜΕΝΑ ΦΟΡΤΙΑ-ΕΦΑΡΜΟΓΗ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ ΤΟΥ 
ΚΕΛΥΦΟΥΣ 

 
Αλκμήνη Δ. Λύτρα 

Πανεπιστήμιο Θεσσαλίας, Τμήμα Μηχανολόγων Μηχανικών, 2017 
 

Επιβλέπων: Δρ. Νίκος Πελεκάσης, Καθηγητής Υπολογιστικής Ρευστοδυναμικής 

Περίληψη 

Στην παρούσα διδακτορική διατριβή μελετάται θεωρητικά και υπολογιστικά η στατική 
απόκριση φυσαλίδων τύπου contrast agent. Το ελαστικό περίβλημα που τις καλύπτει είναι 
βιο-συμβατό και παρέχει μηχανική αντοχή καθιστώντας τες κατάλληλες για εφαρμογές όπως 
η στοχευμένη διανομή φαρμάκου και απεικόνιση πασχόντων ιστών (in-vivo). Ο 
χαρακτηρισμός των ιδιοτήτων του κελύφους, μέτρο ελαστικότητας και μέτρο κάμψης, είναι 
κεντρικής σημασίας για την βέλτιστη λειτουργία τους. Δύο βασικοί τύποι κελυφών 
συναντώνται σε αυτές τις εφαρμογές: Μικροφυσαλίδες επικαλυμμένες με πολυμερές και 
μονές στοιβάδες λιπιδίου. Οι πρώτες χαρακτηρίζονται από υψηλότερο μέτρο ελαστικότητας 
σε σχέση με τις δεύτερες. Τα τελευταία χρόνια το μικροσκόπιο ατομικής δύναμης (AFM) έχει 
αναδειχθεί ως ένα σημαντικό εργαλείο για την εκτίμηση των παραπάνω ιδιοτήτων μέσω των 
καμπυλών δύναμης-παραμόρφωσης. Σε αυτή την κατεύθυνση, αρχικός σκοπός αυτής της 
διατριβής είναι η μοντελοποίηση της στατικής απόκρισης φυσαλίδων επικαλυμμένων με 
ελαστικό περίβλημα κάτω από τον πρόβολο του AFM και η ανάπτυξη μιας μεθοδολογίας για 
την εκτίμηση των ελαστικών ιδιοτήτων και για τους δύο τύπους κελυφών. 

Οπότε, στο πλαίσιο της διατριβής δύο θεωρητικά και αριθμητικά μοντέλα έχουν 
αναπτυχθεί για την περιγραφή του προβλήματος της επαφής μεταξύ προβόλου και φυσαλίδας. 
Ο πρόβολος θεωρείται ως μια επίπεδη και απαραμόρφωτη επιφάνεια, ενώ η φυσαλίδα 
περιγράφεται ως μια ελαστική μεμβράνη και το αέριο στο εσωτερικό της ως συμπιεστό. Το 
πρώτο μοντέλο είναι μια απλή θεώρηση στην οποία όλο το φορτίο είναι συγκεντρωμένο στο 
τέλος της γραμμής επαφής, ενώ στο δεύτερο ο μηχανισμός φόρτισης του κελύφους 
περιγράφεται μέσω της πίεσης αποσύνδεσης (disjoining pressure) ως αποτέλεσμα της τοπικής 
λέπτυνσης της υγρής φάσης μεταξύ προβόλου και μικροφυσαλίδας. Ο βαθμός λέπτυνσης του 
υγρού φιλμ περιγράφει την δύναμη μεταξύ των δύο επιφανειών, απωστική ή ελκτική, ανάλογα 
την σχετική τους θέσης. Σε κάθε περίπτωση επιλύονται μέσω πεπερασμένων στοιχείων το 
ορθό και εφαπτομενικό ισοζύγιο δυνάμεων, καθώς και η εξίσωση της ισοθερμοκρασιακής 
συμπίεσης του αερίου. Οι ελαστικές τάσεις περιγράφονται με τη βοήθεια καταστατικών 
νόμων, η πίεση αποσύνδεσης μέσω ενός δυναμικού πρόσφυσης και θεωρείται αξονική 
συμμετρία. Η αξιοπιστία της αριθμητικής μεθοδολογίας έχει ελεγχθεί συγκρίνοντας με 
ανάλογα αναλυτικά αποτελέσματα. Τα αποτελέσματα κάθε μοντέλου περιγράφονται κυρίως 
σε καμπύλες δύναμης- παραμόρφωσης στις οποίες διερευνάται ο λυγισμός του κελύφους στην 
περιοχή της επαφής. Στο πρώτο μοντέλο επαφής η απόκριση είναι αρχικά γραμμική (περιοχή 
Reissner), ενώ όταν συμβαίνει λυγισμός (περιοχή Pogorelov) η καμπύλη γίνεται μη γραμμική 
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με τα κοίλα προς τα κάτω. Η γραμμική λύση συνεχίζει να υπάρχει και μετά το σημείο 
λυγισμού, αλλά χαρακτηρίζεται από περισσότερη ενέργεια σε σχέση με την λύση λυγισμού. 
Μια τρίτη μη γραμμική με τα κοίλα προς τα πάνω περιοχή παρατηρείται σε σχετικά μεγάλες 
παραμορφώσεις της μεταλυγισμικής που συνδέεται με την σημαντική αύξηση της εσωτερικής 
πίεσης σε σχέση με την ελαστικότητα του κελύφους, ως αποτέλεσμα της σημαντικής μείωσης 
του όγκου. Οι παραπάνω περιοχές ανακτώνται και στην περίπτωση του μοντέλου της πίεσης 
αποσύνδεσης. Σε κάθε περίπτωση το αδιάστατο μέτρο κάμψης, b̂k , δηλαδή ο λόγος της 
αντίστασης σε κάμψη σε σχέση με τη αντίσταση σε εφελκυσμό, καθορίζει την θέση του 
σημείου λυγισμού. Τα πολυμερικά κελύφη έχουν σχετικά μικρό 5ˆ ~ 10bk −  και για αυτό στις 
αντίστοιχες πειραματικές καμπύλες AFM παρατηρείται λυγισμός, ενώ σε κελύφη καλυμμένα 
με λιπίδιο το αδιάστατο μέτρο κάμψης είναι σχετικά μεγαλύτερο 3ˆ ~ 10bk −  και έτσι ο λυγισμός 
δεν είναι προτιμητέα λύση, καθώς η αντίσταση σε κάμψη είναι σχετικά μεγάλη. Επιπλέον, 
όταν η πρόσφυση είναι ισχυρή, ο τοπικός λυγισμός μεταφέρεται σε μεγαλύτερες τιμές 
δύναμης-παραμόρφωσης ή σε ακραίες περιπτώσεις δεν παρατηρείται, διότι το κέλυφος 
βρίσκεται σε σημαντική έλξη με τον πρόβολο, αυξάνοντας έτσι τις εφελκυστικές τάσεις που 
προστατεύουν τον λυγισμό. Η επιφανειακή τάση τείνει να αυξήσει την εσωτερική πίεση, ενώ 
παραμένουσες θλιπτικές τάσεις τείνουν να την μειώσουν και να μεταφέρουν το σημείο 
λυγισμού σε χαμηλότερες τιμές. Τα παραπάνω μελετώνται εκτενώς μέσω παραμετρικής 
μελέτης. 

Επιπλέον, με κατάλληλη τροποποίηση των εξισώσεων ισορροπίας, γίνεται ανάλογη 
μελέτη για φυσαλίδες που δεν είναι καλυμμένες με ελαστικό περίβλημα, οι οποίες 
χαρακτηρίζονται ως ελεύθερες, και η συμπεριφορά τους διέπεται από την επιφανειακή τάση 
και το εσωτερικό αέριο. Σε αυτή την περίπτωση, λυγισμός δεν συμβαίνει ποτέ, όπως 
αναμένονταν, ενώ η απόκριση στις αντίστοιχες καμπύλες δύναμης-παραμόρφωσης είναι 
σχεδόν τετραγωνική. Μια τέτοια προσέγγιση είναι χρήσιμη για την περίπτωση νανο-
φυσαλίδων, στις οποίες δεν υπάρχει ελαστικό περίβλημα. 

Αξιοποιώντας αναλυτικές σχέσεις της βιβλιογραφίας για την γραμμική και μη γραμμική 
περιοχή (Reissner-Pogorelov) των πειραματικών καμπυλών για φυσαλίδες επικαλυμμένες με 
πολυμερές, υπολογίζονται ταυτόχρονα το μέτρο ελαστικότητας και το πάχος του κελύφους με 
πολύ συμφωνία με τις πειραματικές τιμές. Επιπλέον, οι αντίστοιχες καμπύλες δύναμης-
παραμόρφωσης για φυσαλίδες επικαλυμμένες με λιπίδιο δεν εμφανίζουν την μετάπτωση από 
την γραμμική στην μη γραμμική περιοχή, αλλά είναι γραμμικές, ενώ σε αρκετά μεγάλη 
παραμόρφωση τείνουν να στρέψουν τα κοίλα προς πάνω. Σε αυτή την περίπτωση η εκτίμηση 
των ελαστικών παραμέτρων γίνεται συνδυάζοντας την σχέση του Reissner με την σχέση των 
Lulevich et al. και Shanahan. Πραγματοποιώντας προσομοιώσεις και με τα δύο αριθμητικά 
μοντέλα, θεωρώντας τις παραμέτρους που υπολογίστηκαν με τις προηγούμενες μεθόδους, η 
πειραματική απόκριση και των δύο τύπων φυσαλίδων ανακτάται ιδιαίτερα ικανοποιητικά, 
αναδεικνύοντας την ορθότητα των υπολογισμών. 

Το δεύτερο πρόβλημα που μελετάει η παρούσα διατριβή είναι ο λυγισμός των 
προηγούμενων κελυφών όταν συμπιέζονται υπό την επίδραση ενός ομοιόμορφου πεδίου 
πίεσης, κάθετο ως προς την επιφάνεια του κελύφους με σκοπό την κατασκευή των 
διαγραμμάτων διακλάδωσης για τους δύο τύπους κελυφών. Επιλύονται οι ίδιες εξισώσεις, 
όπως παραπάνω, αλλά η φόρτιση είναι γνωστή και επιβάλλεται σε όλη την γενέτειρα 
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καμπύλη. Η αξιοπιστία των αποτελεσμάτων για αυτό το πρόβλημα έχει ελεγθεί συγκρίνοντας 
με αντίστοιχα αριθμητικά αποτελέσματα και ανακτώντας την θεωρητική τιμή του κρίσιμου 
φορτίου λυγισμού. 

Σε αυτή το πρόβλημα, καθώς η πίεση αυξάνεται το κέλυφος συμπιέζεται, αλλά το 
σχήμα του παραμένει σφαιρικό, το οποίο θεωρείται ως η βασική λύση. Όταν το φορτίο γίνει 
ίσο με το κρίσιμο φορτίο λυγισμού, ο πίνακας της ιακωβιανής έχει μία παραπάνω ασταθή 
ιδιοτιμή, όπου διαταράσσοντας την σφαιρική λύση με το αντίστοιχο ιδιοδιάνυσμα, προκύπτει 
ο μεταλυγισμικός κλάδος ο οποίος χαρακτηρίζεται από ασύμμετρα ή συμμετρικά ως προς τον 
ισημερινό σχήματα. 

Όταν η πρώτη αστάθεια πάνω στον σφαιρικό κλάδο των πολυμερών κυριαρχείται από 
ασύμμετρη ιδιομορφή, ο κλάδος λυγισμού αναπτύσσεται υποκρίσιμα μόνο (subcritical 
bifurcation). Η δεύτερη αστάθεια στον σφαιρικό κλάδο κυριαρχείται από συμμετρική λύση 
και αναπτύσσεται τόσο προς τα πάνω, όσο και προς τα κάτω του φορτίου λυγισμού 
(transcritical bifurcation). Τα σχήματα του supercritical συμμετρικού κλάδου είναι τεντωμένα 
στους πόλους και συμπιεσμένα στον ισημερινό (prolate), ενώ τα σχήματα του subcritical 
συμμετρικού κλάδου είναι ανάποδα παραμορφωμένα (oblate). Αντιθέτως, όταν η πρώτη 
αστάθεια κυριαρχείται από συμμετρική ιδιομορφή, αυτή αναπτύσσεται ξανά και στις δύο 
κατευθύνσεις, αλλά η δεύτερη αστάθεια της σφαίρας που χαρακτηρίζεται από ασύμμετρη 
ιδιομορφή δεν είναι δυνατό να εξελιχθεί. Ωστόσο, ο υποκρίσιμος συμμετρικός κλάδος 
γρήγορα παρουσιάζει μία ακόμα ασταθή ιδιοτιμή, που οδηγεί σε ασύμμετρο υποκρίσιμο 
λυγισμό. Σε κάθε περίπτωση, καθώς εξελίσσονται οι υποκρίσιμοι κλάδοι, εμφανίζουν κρίσιμο 
σημείο (limit point), που τους οδηγεί στο να εξελιχθούν σε υψηλότερες πιέσεις από το φορτίο 
λυγισμού. Σε αυτή την περιοχή ο αριθμός των ασταθών ιδιοτιμών είναι κατά ένα λιγότερος σε 
σχέση με το σημείο διακλάδωσης και έχουν χαμηλότερη ενέργεια από την σφαίρα. Στην 
περιοχή αυτή επιπλέον ο όγκος έχει μειωθεί σημαντικά και οι δύο πόλοι του κελύφους να 
τείνουν να προχωρήσουν στη δημιουργία ζώνης επαφής. Στα κελύφη λιπιδίου η εικόνα είναι 
παρόμοια, με την διαφορά πως όταν η πρώτη αστάθεια είναι συμμετρική, δεν προκύπτει ο 
ασύμμετρος κλάδος ούτε από την σφαίρα, αλλά ούτε από την συμμετρική λύση. 

Στο πλαίσιο της διατριβής διεξήχθη παραμετρική μελέτη για να γίνει κατανοητό πως το 
αδιάστατο μέτρο κάμψης, b̂k , καθορίζει το σχήμα της πρώτης αστάθειας. Για μια φυσαλίδα με 

σχετικά μικρό b̂k , η πρώτη αστάθεια είναι συμμετρική, καθώς όμως μειώνεται το b̂k  ή 
ισοδύναμα το πάχος του κελύφους η πρώτη ιδιομορφή είναι ασύμμετρη, ώστε σχηματίζοντας 
μία μόνο περιοχή με έντονη παραμόρφωση να μειωθούν οι τάσεις στο κέλυφος, καθώς η 
μείωση του b̂k  ισοδυναμεί με αύξηση του επιφανειακού μέτρου ελαστικότητας. Μειώνοντας 
περαιτέρω το μέτρο πάχος του κελύφους, μία περιοχή λυγισμό δεν είναι αρκετή για να 
μειώσει τις τάσεις και έτσι μια δεύτερη περιοχή με λυγισμό σχηματίζεται, οδηγώντας σε 
συμμετρικά σχήματα. Θα πρέπει όμως να σημειωθεί ότι όταν συνυπάρχουν σε οι δύο 
ιδιομορφές σε σχετικά μικρούς όγκους λίγο πριν την δημιουργία ζώνης επαφής, ο ασύμμετρος 
κλάδος είναι αυτός με την χαμηλότερη ενέργεια. Επιπλέον στα κελύφη από λιπίδιο, όπου η 
αντίσταση της συμπίεσης του αερίου είναι σημαντική σε σχέση με την ελαστικότητα, το limit 
point των υποκρίσιμων κλάδων οδηγεί σε μια γρήγορη αύξηση της απαιτούμενης πίεσης, 
χωρίς να είναι απαραίτητο να μειωθεί σημαντικά ο όγκος. Στα πολυμερή αντιθέτως, μετά το 
limit point ο όγκος μειώνεται σημαντικά μέχρι να επιτευχθεί ζώνη επαφής.  
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Chapter 1. Introduction 
In the first chapter introductory ideas are discussed about the motivation, the 
existing literature on the topic and the rest of the dissertation is briefly 
outlined. The major area of application of microbubbles is the medical imaging 
and drug/gene delivery systems. The appropriate modeling of their elastic 
properties is a key in order to optimize their static and dynamic response. 
Force-deformation curves of their static response have been mainly 
investigated experimentally with the atomic force microscopy. Current 
asymptotic models estimate the Young modulus from Reissner theory, while the 
shell thickness is assumed as known. Available numerical studies on the 
simulation of a microbubble are very limited and more applicable in polymeric 
shells. Bifurcations diagrams are well known in the literature, but the inert gas 
compressibility, and the effect of surface tension and constitutive law are not 
accounted for. The present dissertation aims at contributing in the research on 
microbubbles by investigating the above aspects. 

1.1 Motivation 

The last decades coated microbubbles have received significant attention in the field of 
medical imaging and drug/gene delivery. Gramiak and Shah [1] were the first to use 
microbubbles in order to enhance ultrasound images. Since then, scientists and manufactures 
make a great effort in developing and optimizing their structure and properties. Initially, air 
microbubbles without coating were introduced and therefore they had small life time in vivo 
[2]. Nowadays, coated microbubbles, also known as contrast agents, have emerged as 
powerful contrast enhancers in medical imaging via ultrasound [3, 4] and as drug/gene 
delivery vectors [2, 5] with highly localized impact on selected tissue. Their viscoelastic 
coating plays a central role in stabilizing them against dissolution while adding targeting 
ligands along with an extra oil layer dissolving the therapeutic agent allows for efficient 
targeting and drug release [2, 6] near specific tissue where therapeutic treatment is required. 
Sonication provides the means to control the dynamic response of the microbubbles. Figure 
1-1 illustrates schematically three possible ways of drug release into a blood capillary and in 
Figure 1-2 clinical imaging with microbubbles of vital organs is compared against 
convectional imaging. Moreover, in both applications with contrast-agent microbubbles 
paramagnetic materials, such as contrast liquid media for MRI, or short wave length radiation 
for X-ray, even the chemotherapeutic agents, are not required and therefore the side effects for 
patients are less, since the dosage does not affect the entire body, is more frequent and has 
better resolution [7], but at the moment the cost is relatively high, thus treatment with 
microbubbles is not yet introduced in clinic. Furthermore, it is not only their small size that 
makes microbubbles suitable for the visualization of very small blood capillaries, but also 
their ability to oscillate nonlinearly in response to ultrasound waves near the walls of small 
capillaries that mostly behave as linear scatterers. Thus, they have been successfully used for 
treatment in the liver [8], kidney [9] and heart [10] among others. 
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Figure 1-1: (a) Ultrasound contrast agents are freely circulating in small vessels along with drug 
particles (blue). Once a sufficiently strong ultrasound pulse is applied to the area, the contrast agent 
expands rupturing the endothelial lining. Drug is then able to extravasate. (b) Drug-laden ultrasound 
contrast agents are freely circulating throughout the vasculature. A pulse of ultrasound is applied and 
ruptures the contrast agent, thereby liberating the drug payload. Because ultrasound is only applied in 
the region of interest, drug is preferentially delivered locally. (c) Drug-laden ultrasound contrast agents 
baring surface ligands targeted to specific endothelial receptors are freely circulating. The ligand 
preferentially binds the ultrasound contrast agent in the target region, increasing local agent 
accumulation. An ultrasound pulse is then applied liberating the drug payload. Figure and legend 
adopted from ref. [2]. 

Coated microbubbles have an initial diameter from 2 to 5 μm and the shell coating is an 
elastic biomaterial with thickness 5-50 nm, Figure 1-3. The core contains a gas phase , usually 
nitrogen, CO2 or perfluorochemicals [11], see also Table 1-1, which produces the local 
density gradient that is vital for the ultrasound. To this end two major families of coated 
microbubbles are normally employed, namely those coated by polymeric and phospholipid 
shells. The former type shells are characterized by larger elasticity modulus hence they are 
identified as «hard», whereas the latter are characterized by, relatively, smaller elasticity 
modulus and a thinner shell hence they are identified as «soft» and more deformable shells. 
Phospholipid shells are also more amenable to chemical treatment so that they can be attached 
to neighboring tissue and consequently are better suited for drug delivery applications. 
Moreover, phospholipid monolayers are self-assembly structures and their hydrophobic tail is 
oriented to gas phase. Both numerical and experimental studies [12, 13] suggest that the 
backscatter signal during an ultrasound measurement is strongly depended on the shell 
properties (elasticity, thickness, material non linearity, viscosity, etc.). 

Accurate estimation of their elastic properties is a key to design and predict their 
response in biological capillaries or tissues. Thus, in this context the present thesis aims at 
developing a numerical/theoretical model in order to calculate and characterize the elasticity 
properties of the coating by employing the theory of shells in conjunction with the appropriate 
numerical techniques. 

(a) (b) (c) 
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Figure 1-2: The comparison of side by side contrast enhanced ultrasound (CEUS) specific image 
(color) versus standard ultra sound (US) B-mode image (grayscale) for (a) a liver arterial hemangioma 
and (b) a liver metastasis. Both lesions are clearly visible in the contrast specific images but not the 
standard B-mode images. In the contrast specific images, the haemangioma is shown to be surrounded 
by a ring of contrast enhancement [arrow in (a)], while the metastasis is shown as a dark area [arrow in 
(b)]. (c) CEUS  image and (d) nonlinear Doppler CEUS image of a rabbit kidney vasculature. 
Nonlinear Doppler shows additional information including the direction of flow (blue and red) as well 
as microcirculation information (green). Figure and legend adopted from ref. [4]. 

 

Figure 1-3: Schematic representation of a microbubble constructed for drug delivery. Figure adopted 
from ref .[14]. 

 
 

(a) (b) 

(c) (d) 

Targeting ligand 

Bubble shell 

Drug in oil phase 

Gas phase 
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Name Shell (stiffness) Gas (solubility) Size (μm) 
Albunex Albumin H Air H 4.3 
Quantison™ Albumin H Air H NA 
Optison™ Albumin H Octafluorpropane L 4.5 
MP1950 Lipid L Decafluorobutane L 2.0 
PESDA Albumin NA Decafluorobutane L 4.7 
Definity Lipid/surfactant L Octafluorpropane L 1.1-3.3 

Imagent Lipid/ surfactant L Nitrogen/perfluoroh
exane L 6.0 

Sonovue Lipid L Sulfur hexafluoride L 2.0 
BR14 Lipid L Perfluorobutane L 2.6 
Levovist Lipid/Galactose L Air H 2.0-4.0 
biSphere™ Polylactide/albumin H Nitrogen H 3.0 
Acusphere Polylactide NA Perfluoropropane L NA 
Sonazoid Lipid/surfactant NA Perfluorobutane L 2.2 
ST68-PFC Lipid/surfactant L Decafluorobutane L 1.8 
Sonavist Cyanoacrylate H Air H NA 

Table 1-1: Microbubble contrast agents Shell stiffness is noted as high (H) and low (L) and gas 
solubility is noted as high (H), low (L) or not available (NA). Table adopted from ref. [11]. 

 

1.2 Atomic force microscopy experiments 

Although the ultrasound environment is the area of application of contrast agent 
microbubbles, an acoustical experiment cannot easily provide the elastic properties of the 
shell, because a lot of parameters must be taken into account. In case of an acoustic 
experiment/simulation the shell is treated dynamically [15-19] and apart from the elasticity, 
the viscous stresses from the shell and/or the surrounding liquid must be also considered 
providing an accurate but more complex picture in the attempt to characterize the material 
coating where dynamic effects may also play a role. However, during of a static experiment 
the number of the involved parameters is smaller and more easily controlled. Toward this 
direction, the atomic force microscopy (AFM) has been successfully used for the visualization 
of three dimensional shapes (topography and roughness) and it is also possible to perform 
force measurements. The AFM was developed by researchers who tried to extend the scanning 
tunneling microscope (STM). In 1986 Binnig and Quate demonstrated [20] for the first time 
that AFM is a capable tool that could measure forces less than nN and until nowadays the 
AFM has been developed performing accurate measurements of thin films [21], living cells 
[22, 23] and artificial vessels [24-27], such as contrast agent microbubbles. More details on 
the operation principles and the physics of a modern AFM can be found in [28]. 

In the present dissertation, the experimental force-deformation (to be referred to as f-d 
henceforth for brevity) curves obtained with an AFM for microbubbles with polymer by 
Glynos et al. [29] and lipid by Bucher Santos et al. [30] coating are employed, in order to 
estimate their elastic  
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Figure 1-4: Force-deformation curves for microbubbles covered with polymeric biomaterial obtained 
by the AFM [29] (a) kc=0.67 N/m and (b) kc=1.14 N/m. 

properties, namely Young and bending modulus. The choice of these two material coatings is 
based on the fact that they are quite different from each other in terms of their elasticity 
modulus and the results could collectively characterize the properties of a whole group of 
microbubbles that are typically used in ultrasound medicine. 

During the AFM experiments the microbubble is attached to a petri-disc, which is 
located under and parallel to the cantilever. When the measurement starts the cantilever 
compresses the microbubble and through the detector, a software records force and 
deformation. It must be noted that the actual procedure is much more complicated and beyond 
the scope of the present thesis, however, the reader could find more details about the 
experiment operation and the sample preparation in the available literature. Moreover, the 
measurements are performed by keeping the velocity of the cantilever at 6-7 μm/s; therefore it 
could be assumed that the shell is in quasi-static equilibrium. Also, a similar experimental 
study [25] suggests that the f-d profiles are not affected by the cantilever velocity. In any case, 
the shell radius is directly measured by the microscope. 

As it is already mentioned the polymeric coatings result in stiff shells with elasticity 
modulus on the order of GPa. This becomes mostly evident by the f-d curves of Glynos et al. 
[29], which show that the required force is up to 400 nN in order to obtain a deformation of 
almost 150 nm. Their work contains an extensive number of f-d curves using tipless 
cantilevers with different stiffness (kc). Moreover, the shell thickness is estimated by a linear 
relation provided by the manufacturer [31]. 

The f-d curves obtained by a cantilever with stiffness kc=0.61 N/m have three different 
regimes; see Figure 1-4(a). An initial nonlinear regime, denoted with 1 occurs for very small 
values of the applied force, on the order of 10 nN and less, where the Albumin outer layer 
(thickness: ~10 nm) and intermolecular/surface adhesion forces between the shell and the 
cantilever are conjectured to participate in the dominant force balance with elastic forces. As 
the external load increases a linear regime appears, denoted with 2, followed by a nonlinear 
regime, denoted by 3, that is curved downwards. The linear regime is the Reissner [32, 33] 
regime where stretching and bending forces coming from the stiff polylactide shell balance 
each other over a flattened contact area that characterizes the microbubble shape. This is the 

(a) (b) 
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part of the f-d curve that is typically used in the literature in order to infer the shell elasticity 
modulus once the shell thickness (h) and radius (Ro) are known [24, 29]. The third regime 
occurs as the external load further increases and it is known in the literature as Pogorelov [34] 
regime. It appears as the compressive load on the flattened part of the shell exceeds a certain 
value, in which case the shell bents forming a crater at the pole region while a dimple forms at 
some distance from the pole where most of the bending energy is stored. The f-d curves 
obtained by a cantilever with stiffness kc=1.14 N/m they have initially the same three regimes 
as it is already described, but they have two additional regimes after the third, see also Figure 
1-4(b). So, the fourth regime is an almost linear curve with zero slope, that is associated with 
the post buckling stage and the final regime is described by a linear curve with positive slope. 

On the other hand, the lipid coatings [30] are softer and for deformation up to 500 nm 
the required force is only 12 nN, since their Young modulus is in the order of MPa. In this set 
of measurements the employed cantilevers have lower stiffness kc=0.25 and 0.07 N/m and the 
shell thickness is assumed to be 5 nm for all the interrogated microbubbles. 

In contrast with the f-d curves obtained from polymeric shells, f-d curves from lipid 
shells is quite different, Figure 1-5. In particular, the above regimes are not identified and 
most part of the curve responds linearly, indicating that Pogorelov regime is bypassed by an 
extended regime that is characterized by an almost flat contact region, e.g. buckling is not 
taking place. It is also important to notice that the required force for the shell deformation is 
not only quite small, but it is also on the order of intermolecular forces resulting by the 
interaction of two bodies approaching each other. Moreover, between the cantilever and the 
shell a thin film of water is formed, due to the hydrophilic nature of the lipid head, which is 
compressed as the cantilever approaches the shell. The compression of the water film causes a 
local pressure change in comparison with the bulk aqueous phase, known as disjoining 
pressure [35, 36]. Thus, apart from stretching and bending tensions, the disjoining pressure 
also contributes to the force equilibrium and stabilizes the shell, which remains attached to the 
water-cantilever interface thus delaying or even bypassing buckling. This argument is verified 
by calculations of the present thesis that conform with the absence of shell buckling. However, 
the current experimental set-up for both type of materials does not allow for side view photos 
in order to investigate experimentally the shell buckling. Moreover, Bucher Santos et al. [30] 
confirm that Reissner linear equation does not provide a reliable estimate of the shell elastic 
properties. They also consider the model proposed by Lulevich et al. [25] where bending 
dominates very small deformations whereas stretching dominates at larger deformations. They 
consider the latter model as more reliable that Reissner’s theory without, however, arriving at 
any conclusive procedure for estimating shell elastic properties. 
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Figure 1-5: Force-deformation curves for microbubbles covered with lipid biomaterial obtained by the 
AFM [30]. 

In addition, the thin water film exists not only in lipid experiments, but also in the above 
experiments for polymers. The only reason for not taking into account its effect is that the 
resulting disjoining pressure is negligible compared with the elasticity modulus of polymers. 
Finally, there is one more significant difference between polymers and lipids, which is 
considered in the present thesis: the shell thickness. The former type of coating is a stiff 
material and is therefore described by classic shell mechanics [37], i.e. the bending modulus is 

a function of the area dilatation modulus ( )2
bk hχ . On the other hand, the bending stiffness 

and area dilatation modulus are treated as independent parameters for lipid monolayer and 
bilayer shells, [38, 39]. 
 

1.3 Literature review 

Doubly/singly curved with positive or negative curvature, the shells have always been in 
the center of interest for engineers and scientists, because they usually are light constructions, 
which guarantee stability and architectural design. Most of them are inspired by the nature, 
like water drops, egg shells and bones. In the history of mechanics, the theory and the 
governing equations have been initially developed mainly for artificial shells, like tanks, 
domes and pipes, where Timoshenko [37], Landau [40] and Reissner [32, 33] had been 
working and developing the field since the early ‘30s. Meanwhile, the advances in medicine 
since the early 1970’s as they are described in session 1.1, demand appropriate design and 
optimization, which is a highly interdisciplinary area, including chemistry, engineering, 
material science, medicine etc. The present thesis investigates the elastic properties and the 
static response in the context of classic shell mechanics. 

In the literature the elastic properties of contrast agent microbubbles, namely Young and 
bending modulus, have been mainly studied experimentally by the AFM and the resulting 
force-deformation curves are fitted with available asymptotic equations. In the following, 
relevant studies from the literature will be reviewed in order to describe the available models 
and their applications/limitations. The experiments from Glynos et al. [27, 29] and Bucher 
Santos et al. [30] will not be further discussed in the present session. Lulevich et al. [25] 
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Figure 1-6: Force-deformation curves obtained by (a) Lulevich et al. [25] and (b) Elsner et al. [41] 
with the AFM. 

perform AFM measurements for polymeric microbubbles (poly-DL-lactic acid (PLA) and 
monodisperse melamine formaldehyde (MF) particles) using a cantilever with a spherical tip, 
and the f-d profiles they obtained are similar with the ones presented by Glynos et al. [29], 
Figure 1-6(a). In the same paper, they have developed an asymptotic relation, based on classic 
elasticity theory, where it is assumed that the bending term could be omitted in relatively high 
values of deformation. The resulting Young modulus is about 1-100 MPa and by comparison 
with an experiment on osmotically induced deformation of the same microbubbles, it was 
found to be an order of magnitude lower [42]. Moreover, Elsner et al. [41] study the 
deformation of polyelectrolyte multilayer capsules (polyallylamine and polystyrene-sulfonate, 
PAH/PSS) and estimate the Young modulus based on Reissner theory, Figure 1-6(b). It is of 
interest that in their work they examine the validity of Reissner theory for such experiments 
via FE simulations (Abaqus), since the Reissner analytical solution is more suitable for point 
loading whereas, on the other hand, the AFM cantilever is an extended plate. They prove that 
Reissner theory is an accurate analytical solution for AFM experiments with tipless cantilever 
as far as small deformations are considered and for microbubbles covered with materials that 
have relatively high Young modulus, thus, they behave as the conventional shells. Moreover, 
the effect of temperature in shell stiffness is investigated for phospholipid microbubbles [43] 
and for air or liquid filled capsules [44] by employing the AFM and Reissner theory. They 
found that increasing the temperature from 10 to 37 °C the shell stiffness decreases 
significantly. 

On the other hand, studies that simulate the compression of a microbubble under the 
AFM are very limited and most of the available numerical results refer mainly on the general 
problem of the compression of an elastic shell by a rigid and flat surface. Such calculations are 
more suitable for microbubbles covered with a polymeric biomaterial, as their behavior is 
closer to convectional shells. Hertz [45] was the first to formulate the contact between two 
elastic spheres. In his work, Hertz estimates the contact pressure to be a quadratic function of 
contact length, assuming frictionless contact. Updike and Kallins in a series of papers [46-48] 
solve the problem of the compression of an elastic shell under a rigid and flat surface. Initially 

(a) (b) 
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they perform stability analysis and they prove that for small deformations the shell and the 
plate stay in contact, but with further increase of the external load buckling takes place. The 
first buckling is axisymmetric and occurs when the contact angle is about to 8°, however in 
higher values of deformation they observe non-symmetric buckling. Moreover, they estimate 
the contact pressure to be an almost zero function along the contact area, except the end of 
contact, where the pressure takes in infinite value. Therefore, they suggest that the pressure 
load could be simulated by a point load at the end of contact. Furthermore, Johnson, Kendall 
and Roberts (JKR) [49] extend Hertz theory accounting also for surface energy. They estimate 
analytically the force required for separation of two elastic spheres, which was found to be 
proportional to sphere radius and surface energy. They also conclude that the surface energy 
for high elasticity modulus materials is negligible and vice versa for softer materials. Lately, 
Shanahan [50] modify and extend the JKR theory in order to calculate the pull-off force 
between an elastic shell and a rigid plate, assuming a linear material and isothermal 
compression for the inert gas. Shanahan’s solution predicts a pull-off force 33% smaller 
compared with JKR solution. 

In addition, a significant amount of research has been carried out on the 3D deformation 
of spherical elastic shells subject to a concentrated point load [51], or under a flat surface [52] 
at static conditions or subject to an external Stokes flow [53]. Most of them report that initially 
buckling is axisymmetric while for higher values of deformation 3d buckling wrinkles are 
observed. Regarding this, the present thesis treats the shell as axisymmetric, since in the 
experimental data the deformation is relatively small. 

Moreover, another major group of publications that is in the center of interest of the 
present thesis is the one of buckling of elastic shell subject to a uniform pressure. Timoshenko 
[54] has calculated the critical buckling load for small deformations and linear material in 
which the shell from a compressed sphere buckles into an axisymmetric or symmetric shapes. 
Koga and Hoff [55] solve numerically the problem of a spherical shell under uniform pressure 
with an initial geometric imperfection. The first buckling is characterized by an asymmetric 
mode, while the second by a symmetric. The post buckling behavior of elastic tubes with 
opposite sides in contact is investigated by Flaherty et al. [56], where they calculate the value 
of the required pressure for contact, as function of the number of pods. More recently, Gao et 
al. [42] investigate experimentally the osmotic buckling of polyelectrolyte capsules and they 
observe buckling instability with asymmetric shape. The buckling behavior of elastic capsules 
in shear flow has been studied by Walter et al. [57] for prolate or oblate shapes and by 
Ramanujan and Pozrikidis [58] for spherical and non-spherical initial shapes. The dynamic 
buckling and stability of contrast agent microbubbles are investigated numerically by Tsiglifis 
and Pelekasis [13, 38] subject to acoustic disturbances. They prove that the elasticity 
parameters and the constitutive law control the buckling by performing an extensive numerical 
and parametric analysis. Vlachomitrou and Pelekasis [19] have developed a numerical method 
for the dynamic behavior of a contrast agent microbubble when the viscous forces are 
accounted for. Thus, the dynamic evolution is captured until static equilibrium. The static 
shapes are obtained also in the post-buckling regime characterized by asymmetric or 
symmetric modes. Efthymiou and Pelekasis [15] investigate the dynamic response of 
encapsulated microbubbles near a rigid wall, assuming inviscid and incompressible flow. They 
observe dynamic buckling and a variety of post-buckling symmetric or asymmetric shapes. 
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Moreover, jet formation was not detected, since the shell elasticity and viscosity balance 
external disturbances. Knoche and Kierfeld [59] have studied numerically the static buckling 
of spherical soft shells under negative pressure or reduced capsule volume. They employ the 
equations of equilibrium and by minimization of total energy they demonstrate a rich 
bifurcation behavior. They examine two major categories of capsules regarding the ratio of 
bending modulus with respect to the area dilatation modulus. In both types of capsules the first 
bifurcation is dominated by an asymmetric mode, followed by a symmetric bifurcation. Their 
calculations allow also for the contact of two opposite sides, thus in extremely small shell 
volumes, asymmetric or symmetric shapes with an extensive contact area are evaluated. 

The surface energy between two bodies in contact has been an area of research for a 
long time, when Young [60] described the balance of energies between three phases: Solid, 
liquid and gas, as function of the apparent contact angle, and later Young and Laplace [35, 36] 
quantify the capillary pressure difference across two static liquids as function of the surface 
tension. However, when the problem comes up to the scale of molecular dimensions, forces 
rising by the electrostatic interaction of molecules must be also considered. In this case, the 
Young-Laplace equation has an additional term referred to as disjoining pressure. The 
disjoining pressure is expressed as the derivative of the potential energy, which describes the 
interaction of two bodies that approach each other. The idea of disjoining pressure is widely 
used when soft matter, like lipid shells, are considered: Kalliadasis and Chang [61] employ the 
disjoining pressure in their formulation in order to estimate the contact angle of a gas-liquid 
meniscus by the balance of capillary, viscous and intermolecular forces and they use a long 
range attractive potential. They investigate the asymptotic behavior of the contact angle as 
function of the capillary number and intermolecular forces. Moreover, Chamakos et al. [62] 
perform simulations of a drop resting on a patterned surface by employing a short range 
repulsive-long range attractive energy potential. Various wetting equilibrium states were 
found and their stability was investigated. Accordingly, Blount et al. [63] investigate a vesicle, 
that has only bending resistance, adhered to a substrate. In this fashion, they calculate static 
shapes by employing the balance between disjoining pressure, bending resistance, surface 
tension and pressure difference between the vesicle interior and the ambient phase. They also 
provide an extensive asymptotic analysis in order to determine the main force balances across 
the vesicle surface. They show that around the transition region, defined between the adhered 
area and the outer shell, the bending resistance balances the disjoining pressure and in the 
outer region bending resistance is equally important as the pressure difference. Lipid bilayers 
adhered to a flat surface are also simulated by Cantat et al. [64] with a long range attractive-
short range repulsive potential. And finally, Leite et al. [65] in their review suggest when that 
the AFM measurements can be modeled with a potential energy function. 
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1.4 Novelty and scientific contribution of the dissertation 

As it can be gleaned from the above review, in all of the available studies for the 
estimation of the elasticity properties, the shell thickness is treated as known, while the Young 
modulus is estimated most of the times based on Reissner theory for both lipids and polymers, 
even though the main concertation of literature is on polymers. Thus, the present dissertation 
aims at presenting a novel method to estimate simultaneously both Young and bending 
modulus from the force-deformation curve. So, the proposed relations are an additional tool 
especially for experimentalists that perform AFM measurements and wish to estimate the 
above properties, without prior knowledge of the shell thickness, which is usually provided by 
the manufacturer or is based on empirical observations. 

Secondly, two numerical models that, not only recover the AFM experiments, but also 
explain the mechanisms of deformation of microbubbles have been developed in the context 
of present thesis. In particular, the former model based on classic shell mechanics verifies that 
the behavior of polymeric shells is closer to convectional shells. The latter has been developed 
for shells covered with lipid, where the effect of intermolecular forces is accounted for. A 
modification of the second FE model verifies that lipid shells behave like elastic shells and not 
like surfactants. Moreover, the inert gas is treated as ideal and its compression is investigated. 
The effect of pre-stress is also accounted in both models justifying that some of the 
microbubbles have experienced some gas leakage. 

In addition, the microbubbles are investigated subject to a uniform pressure and 
bifurcations diagrams of their static buckling and stability are demonstrated, when the gas 
compressibility and surface tension are accounted for. Through a parametric analysis is 
showed that for shells with relative high elasticity modulus the first buckling is dominated by 
an asymmetric eigenmode, which followed by a second symmetric buckling. However, in 
softer shells the first buckling is characterized by a symmetric shape. In both cases a limit 
point was detected in the secondary branches, associated with a change in the number of 
negative eigenvalues. Moreover, the gas compressibility and surface tension tend to increase 
the effective stiffness of the shell and the value of critical buckling load, in comparison with 
classic buckling, where stretching and bending are the only terms that balance the external 
load. 

The above models contribute in the relevant scientific research on the static deformation 
of microbubbles. 
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1.5 Thesis outline 

The rest of the thesis is divided into six chapters from chapter 2 up to 7, where the 
governing equations, along with results and conclusions are discussed. More specifically: 

In chapter 2 all the governing equations that describe each problem are presented. The 
first part of the chapter 2 contains some preliminary relations form differential geometry. In 
the second part the elastic tensions, moments and the constitutive laws are reviewed. The 
formulation of the microbubble under the AFM is in third part of the chapter 2 and it is 
investigated separately for the different types of microbubbles. Therefore, a subparagraph 
contains the equations for a polymeric microbubble and a following subparagraph contains the 
formulation for a microbubble covered with lipid biomaterial. In the fourth part of the chapter 
2, the microbubble is investigated subject to a uniform pressure field. Finally, the concept of a 
pre-stressed elastic shell is studied and the residual stresses are calculated. 

In chapter 3 the finite element methodology and the discretized equations are defined. 
Initially, the basis functions are presented and they are followed by the weak formulation. In 
the same part of the chapter 3 the Newton-Raphson method is reviewed, along with 
continuation techniques. At the end of the chapter 3, a paragraph consecrates on benchmark 
calculations and comparison with available results from the literature. 

In chapter 4 numerical results employing the formulation developed for the contact 
problem are presented. In particular, the chapter is divided into three paragraphs with 
numerical results pertaining to the classic contact model, the intermolecular forces model and 
the case of a free microbubble, respectively. In any case, an initial microbubble is 
investigated, which serves as a reference and then parametric study is performed in order to 
investigate the effect of different parameters on the shell equilibrium. The main results are 
demonstrated in force-deformation curves and energy-deformation curves, along with the 
shape of the microbubble in deformed configuration. 

Chapter 5 contains the bifurcation diagrams (pressure-volume) for both microbubbles 
covered with polymer or lipid. The total energy and eigenvalues of the post-buckling solutions 
are investigated in order to characterize the stability of each branch. An extensive parametric 
analysis is also carried out in order to highlight how the different parameters change these 
diagrams. 

In chapter 6 the analytical solutions developed by Reissner and Pogorelov for the linear 
and non-linear regimes of the force-deformation curves, respectively, are demonstrated in 
order to estimate the slopes of the relative regimes in experimental force-deformation curves 
and estimate simultaneously the Young modulus and the shell thickness. In addition 
asymptotic analysis is performed in order to understand better the numerical results especially 
for the intermolecular forces model. Furthermore, a novel methodology for estimating the area 
dilatation modulus and bending stiffness is proposed, by coupling the slope of the 
experimental curve in the bending stiffness dominated Reissner regime with the cubic 
dependence on deformation in the gas compressibility dominated regime for microbubbles 
covered with phospholipid. 

Finally, in chapter 7 the main findings and conclusions are discussed, while at the end of 
the chapter some ideas are presented for future work. 
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Chapter 2. Problem Formulation 
The second chapter contains the governing equations defining the geometry of 
the problem, the constitutive laws and equilibrium equations, in order to 
formulate the response of a coated microbubble subject to a static load. The 
shell surface is regarded as axisymmetric and it is parameterized by a 
lagrangian variable. The elastic coating develops internal elastic tensions and 
moments in order to balance the external forcing. Three constitutive laws are 
examined, namely Hook, Mooney-Rivlin and Skalak, in order to investigate 
different material response (linear, strain-softening and strain hardening). The 
formulation of polymers and lipids under the AFM is investigated separately. A 
classic contact model is adopted for the former case, a model with 
intermolecular forces for the latter and simulations were performed in order to 
conduct an extensive parametric study for both cases. Moreover, the 
microbubble is also investigated subject to a uniform pressure field. Finally, 
the effect of pre-stress is discussed in terms of residual strains and stresses. 

2.1 Lagrangian Description 

In the present thesis a microbubble is investigated subject to different types of static 
loads and materials. Nevertheless, in any case the interface of the microbubble is considered 
as a group of lagrangian particles, where every particle described by a relevant variable ξ, 
which takes values in the interval [0, 1] corresponding to the first and final node of the 
physical domain, respectively. Upon introducing the independent variable ξ, is it possible to 
describe complex shapes of the interface by following these particles. Therefore, the spherical 
coordinates for an axisymmetric surface can be written as function of ξ: 

( ) ( )and for 0 1= = ≤ ≤r r ξ θ θ ξ ξ  (2-1) 

Moreover, the normal and tangential vectors of any node are written as: 

, and sins r s s s r sn r e r e t r e r e t r eθ θ ϕ ϕθ θ θ= − = + =
 

       (2-2) 

where, , ,re e eθ ϕ
    are the unit vectors in spherical coordinates and s denotes the arc-length along 

the generator curve (meridional plane for φ=0) and when it is used as subscript denotes 
differentiation [66], see also Appendix A. It is also possible and more convenient to write the 
unit vectors in terms of ξ. After introducing the relation of arc-length s with ξ, eq. (2-2) reads 
as: 
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= = + , see also . In the same way, when ξ is used as subscript denotes 

differentiation. Moreover, in Figure 2-1, z and σ, denote the axes of a relevant cylindrical 
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coordinate system for φ=0, with the same origin as the spherical one. It must be noted that 
when the microbubble is investigated under the AFM, it is taken to be symmetric with respect 

to the equator, i.e. 0,
2
πθ  ∈   

, Figure 2-1(a). However, in the case where the microbubble is 

investigated under a uniform pressure, this symmetry is not considered, i.e. [ ]0,θ π∈ , because 

asymmetric configurations with respect to the equator are also possible, Figure 2-1(b). After 
introducing the unit vectors of the surface, the curvature tensor can be defined as: 

sB n= ∇


  (2-4) 

with its components in the covariant ( ) ( )1 2, , , ,sa a n t t nϕ=
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The corresponding eigenvectors are the st


 and eϕ
 , therefore the principal directions are 

the s and φ. In addition, rs and rφ denote the local radii of curvature along s and φ. Then, the 
mean curvature is ( ) 2m sk k kϕ= + . 

 
Figure 2-1: Lagrangian description of the interface for the (a) AFM case and (b) uniform pressure. 
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2.2 Elastic Tensions, Moments and Constitutive Laws 

The microbubble is covered by a biocompatible material, usually phospholipid or 
polymer, in order to decelerate gas diffusion in water or blood. The encapsulation provides 
also mechanical strength, thus the microbubble is possible to balance external forces by 
developing elastic tensions and moments. In the present dissertation, the elastic tensions and 
moments are described in the context of theory of thin elastic shells and continuum mechanics 
[37]. In the elastic shell, in-plane and shear tensions along with bending moments are 
developed as a result of deformation of the shell subject to an external load. In Figure 2-2 the 
tensions and moments are illustrated if the curve assumed to undergo axisymmetric 
deformations. As it can be gleaned, both tensions and moments are written in the curvilinear 
[s, φ, n] basis for simplicity, because the [s, φ, n] coincides with principal directions [38, 67]. 
Therefore, the meridional (τss) and azimuthal (τφφ) tensions are introduced, which correspond 
to the in-plane stress resultant. The transverse shear stress q lies perpendicular on an s-φ plane 
along with the meridional (mss) and azimuthal (mφφ) bending moments. The total tension 
tensor is: 

( )ss s s sT qn t t t t qt nϕϕ ϕ ϕt t t= + = + +
    

 

 (2-6) 

and contains both in plane and shear tensions. In the same manner, the bending moment tensor 
is defined as: 

ss s sm m t t m t tϕϕ ϕ ϕ= +
   

 (2-7) 

Most of the elastic materials respond linearly in the presence of an external load for 
small values of deformations [38, 68]. However, with further increase of the load the force-
deformation relation might be non-linear, even if buckling or other phenomena do not occur. 

 

Figure 2-2: Stresses and moments around an infinitesimal patch with dimensions (σdφ)×ds 
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In this case, their behavior is characterized as strain softening or strain hardening, depending 
on the values of the effective elasticity modulus. The strain softening materials exhibit a 
smaller elasticity modulus as the deformation increases, while the opposite happens in strain 
hardening materials. These observations can be described mathematically using the 
appropriate constitutive law. For the first group of materials the Hook’s law is more relevant, 
while for the strain softening and strain hardening materials Mooney-Rivlin and Skalak 
constitutive laws are used, respectively. The strain softening behavior was proposed by 
Mooney [69] for rubber like materials for the description of the hyperelastic stress-strain 
relation and later Rivlin [70] expressed the energy function in terms of the strain tensor 
invariants. Moreover, the energy function for the strain hardening behavior was introduced by 
Skalak et al. [71] in order to calculate the elasticity modulus of red blood cells. 

In the following, the surface gradient displacement A  is introduced, written in cartesian 

coordinates [72], so that the mathematical form of the above constitutive laws will be 
described: 

( ) ( )xA I nn I NN
X
∂

= − ⋅ ⋅ −
∂



 



  (2-8) 

where ,X x


  denote the position vector of a surface particle and ,N n


  are the normal to the 
surface vectors, in the referential and deformed configurations, respectively. And then, the left 
Cauchy-Green tension tensor C  is defined as: 

2T
i i iC A A t tλ= ⋅ =  (2-9) 

which has two non-zero eigenvalues, 2 2 and s ϕλ λ , associated with two orthogonal eigenvectors 

corresponding to local principal axes of deformation in the tangential membrane plane. The 
stretching ratios are given by the next relation: 
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where the superscript SF stands for the stress free state and sinrs θ= . Then the Green-
Lagrange deformation tensor e  is defined as: 
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And the tension tensor  t  : 
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In the above equations, I1 and I2 are the invariants of e  strain tensor, measuring the local 

change in length and area, and Js is the ratio between the current and reference local area: 
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λ λ Α Α ΝΝ

= = + − = − = −

= = ⋅ +
 

 (2-13) 

and w is the strain energy function due to in plane tensions. The exact form of the strain 
energy function depends on the elastic behavior of the material. When linear materials are 
examined, the energy function wHK of the Hook’s law reads as follows [73]: 

( ) ( ) ( )( ) ( )2 22 2 2 21 2 1 1 1
4 1

HK s
s s

Gw ϕ ϕλ ν λ λ λ
ν

 = − + − − + −  −
 (2-14) 

And then by substitution in eq. (2-12), the in plane tension τss is: 

( ) ( )2 21 1
1

HK s
ss s

G
ϕ

ϕ

t λ ν λ
λ ν

 = − + − −
 (2-15) 

where, 
( )2 1sG χ

ν
=

+
 and corresponds to surface shear modulus [N/m] and χ is the surface 

dilatation modulus, 3 3 sEh Gh Gχ = = = , with E, G denoting the 3D Young’s modulus and 
shear modulus, respectively, and h the shell thickness. 

For Mooney-Rivlin materials (strain softening) [69, 70]: 

( ) ( ) 1
1 2 1 2

2 2

1 2, 1 2 1
2 1 1

MR MRG Iw w I I b I b I
I I

    +
= = − + + + + +    + +    

 (2-16) 

( )
( )2 2

2
1 1 1MR MR

ss s
s s

G b ϕ
ϕ ϕ

t λ λ
λ λ λ λ

 
   = − + −  
 

 (2-17) 

with 
3MRG χ

=  and b is dimensionless parameter, [ ]0,1b∈ , defining the nonlinearity of the 

Mooney-Rivlin law. The case b=0 corresponds to a neo-Hookean membrane and as b tends to 
zero the membrane becomes softer. Moreover, the description of the strain softening behavior 
with Mooney-Rivlin law allows for unlimited dilatation of the membrane, which is satisfied 
by a progressive membrane thinning. 

For Skalak materials (strain hardening) [71]: 
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( ) 2 2
1 2 1 1 2 2, 2 2

4
SK SKGw w I I I I I CI = = + − +   (2-18) 

( ) ( ) ( ){ }2 22 2 1 1SK SK
ss s s s s

s

G C ϕ ϕ
ϕ

t λ λ λ λ λ λ
λ λ

 = − + −    (2-19) 

with 
( )
( )

1
2 1 2SK

C
G

C
χ +

=
+

 and parameter C a positive number that controls the area dilatation. 

Despite the fact that the above law was originally developed for red blood cells, which are 
lipid bilayer structures with an almost incompressible response in which case C>>1, the 
Skalak law is very general and therefore it is suitable for a strain hardening membrane whether 
it is area compressible or not. 

In addition, note that the τφφ tension is obtained by interchange of subscripts in eq. 
(2-15), (2-17) and (2-19). 

Moreover, shear tensions are also acting on the shell along the thickness. The shear 
tension is related with the bending moments by writing a moment balance on an infinitesimal 
patch [67]: 

( )sq m I nn= ∇ ⋅ ⋅ −


   (2-20) 

Zarda et al. [39] suggested a linear constitutive law, similar to the membrane 
constitutive equations, for the bending moments: 

( ) ( );b b
ss s s

s

k km K K m K Kϕ ϕϕ ϕ
ϕ

ν ν
λ λ

= + = +  (2-21) 

where ,SF SF
s s s sK k k K k kϕ ϕ ϕ ϕλ λ= − = −  are the bending strains along the principal directions 

s,φ, respectively. Moreover, for a spherical stress-free shell: 1SF SF
sk kϕ= = . kb denotes the 

bending modulus and according to classic shell theory for a three dimensional elastic shell 
with Young modulus E and thickness h [37]: 

( )
3

212 1b
Ehk

ν
=

−
 (2-22) 

Therefore assuming a linear constitutive law for the bending moments, the total bending 
energy is a quadratic function of bending strains: 

( )2 22
2
b

b s s
kw K K K Kϕ ϕν= + +  (2-23) 

In the final part of this subparagraph the equations of the elastic equilibrium will be 
discussed for the general case of static elastic membrane that separates two fluids. Thus, 
following Tsiglifis & Pelekasis [38] the force balance on the interface reads as: 
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( ) 2in out m BWP P I n k n Fγ ∆− ⋅ = +


 

 (2-24) 

where, Pin and Pout is the internal and the external pressure, I  is the 2×2 identity matrix, γ is 

the surface tension, n  is the normal vector that points towards the surrounding fluid and F∆


 
is the vector of stresses that arise due to elasticity which reads as [67]: 

n s s sF F n F t T∆ ∆ ∆= + = −∇ ⋅
 





 (2-25) 

Then, substituting the previous analysis in (2-25): 

( )

( )

1

1

n s ss

ss
s ss s

q
F k k

s

F k q
s s

ϕ ϕϕ

ϕϕ

s
∆ t t

s
t s∆ t t

s

∂
= + −

∂
∂ ∂ = − + − + ∂ ∂ 

 (2-26) 

and similarly for (2-20): 

( )1 ssm
q m

s ϕϕ

ss
s s

∂ ∂
= − ∂ ∂ 

 (2-27) 

Finally, it should be noted that the above analysis refers to the mid-surface of the shell. 
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2.3 Formulation for a microbubble under the AFM 

A microbubble under the compression of a rigid and tipless cantilever is investigated. 
The microbubble is assumed to follow axisymmetric deformations and therefore only a 
generator curve is studied. Different formulation is followed for microbubbles covered with a 
polymeric shell and a lipid monolayer. The main reason of this choice is that the latter group 
of microbubbles is softer, it is deformed by forces in the range of nN’s, and therefore the 
intermolecular forces should be accounted for. On the contrary, microbubbles covered with a 
polymeric shell are stiffer they are deformed in the range of 0-400 nN and consequently the 
intermolecular forces are negligible. Therefore, a classic contact model is presented for the 
case of polymeric microbubbles and a contact model including the intermolecular forces is 
employed for microbubbles covered with a lipid monolayer. 

2.3.1 The polymeric shell-classic contact model 

 

Figure 2-3: Schematic representation of a microbubble covered with polymer compressed by a 
cantilever. (a) Reference state, (b) Deformed state with flat and buckling configuration. 

A microbubble covered with a polymeric elastic shell is investigated under the 
compression of the cantilever of the AFM, Figure 2-3, and symmetry is assumed with respect 
to the axis that is perpendicular to the cantilever and with respect to the equatorial plane. 
While the shell is compressed, elastic tensions are developed in order to balance the external 
load (Pext), and at the same time the shell volume is reduced assuming isothermal compression 
while the gas pressure (PG) increases. Moreover, the shape of the shell remains flattened for 
small values of deformation, but with further increase of the external load the shell buckles, 
forming a dimple around the pole, as a result of high compressive tensions. For flattened 
shapes, the cantilever is in contact with the microbubble with the corresponding contact length 
to be Rsin(θc). However, after buckling, only a small region at the end of the dimple is in 
contact with the cantilever. 

In order to simulate the above problem, the force balance between elastic and external 
forces is employed, coupled with an isothermal gas compression equation. The force balance 
is written as follows: 

PG 

PA 

(a) Reference State 

PG 

PA 

(b) Deformed State 

Pext 
Cantilever 

Cantilever 

θc(ξ) r(ξ) z 
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( ) ( )G A BW sP P n F n nΙ γ− ⋅ = ∆ + ∇ ⋅
 

  

 (2-28) 

or in terms of components in normal ( n ) and tangential direction ( st


): 

( ) ( ) ( )

( )

1:

1: 0

G A s ss BW s

ss
s ss s

q
n P P k k n

s

t k q
s s

ϕ ϕϕ

ϕϕ

s
t t γ

s
t s t t

s

∂
− = + − + ∇ ⋅ ∂


∂ ∂  − + − + =  ∂ ∂ 



 



 (2-29) 

The surface tension between the bubble and the water is denoted with the γBW. The 
isothermal gas compression reads as: 

G f A iP V P Vγ γ=  (2-30) 

where PG and Vf are the gas pressure and the volume at the deformed configuration, 
respectively. PA and Vi denote the same quantities but in the reference state, where it is 
assumed that the initial internal pressure is equal to the ambient pressure. Superscript γ 
denotes the polytropic index, here γ=1, for isothermal compression. 

Moreover, an equation is required in order to capture the finite contact length. As a first 
attempt the following kinematic condition is considered: 

( )cos
0    for all of the contact elements

d rdz
d d

θ
ξ ξ
= =  (2-31) 

After applying the eq. (2-31), a pressure distribution of the external load (Pext) is 
calculated. However, this kinematic condition is quite strict and fails to capture the buckling 
configuration. Moreover, the calculated load distribution has an almost zero value in the 
intermediate elements and a non-zero value at the end of contact. Due to this abrupt change in 
the applied load along the contact region, numerical solution with an increasing number of 
elements is difficult introducing wiggles around the edge of the contact region. Therefore, it is 
possible to apply the eq. (2-31) only at the last node of the contact area, eq. (2-32), and 
consequently to reduce the pressure distribution into an unknown point pressure at the end of 
contact. A similar formulation is followed by Updike & Kallins [46-48]. 

( )cos
0,     = c

d r
d

θ
θ θ

ξ
=  (2-32) 

for the last node of the contact region. In this case the Lagrangian node on which the point 
load, PExt, is applied is treated as known leaving the load itself as one of the unknowns, 
Moreover, the normal force balance that corresponds to the last contact node is modified by 
adding the point pressure Pext on the LHS. 
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( ) ( )1
ext G A s ss BW s

q
P P P k k n

sϕ ϕϕ

s
t t γ

s
∂

+ − = + − + ∇ ⋅
∂





 (2-33) 

In this fashion both flat and buckled shapes can be captured and their relative stability can be 
investigated in the context of AFM measurements. 

The problem formulation is rendered dimensionless by introducing the characteristic 
length scale, Ro. Then the solution depends mainly on three dimensionless parameters, namely 

b̂k , ˆ
AP  and ˆBWγ : 

2
ˆ ˆ ˆ ˆˆ ; ; ; ; 1b A o
b A BW

o o

r k P Rr k P
R R

γγ χ
χ χ χ

= = = = =  (2-34) 

χ signifies the area dilatation modulus of the shell, which is introduced in order to eliminate 
the shell thickness from the formulation. For polymeric shells that normally have thicker 
coatings, bending resistance is related to the elastic modulus and the shell thickness, eq. 
(2-22). 

Hence,  

( )
( )

3

22

2 2 2

12 1 1ˆ
12 1

b
b

o o o

Eh
k hk
R EhR R

ν

χ ν

−  
= = =  

−  
 (2-35) 

and the ratio between the shell thickness and the microbubble radius emerges as an 

independent dimensionless number. It should be stressed that the above three parameters, b̂k , 
ˆ
AP  and ˆBWγ , denote the relative importance among the four resistances to shell deformation, 

namely the stretching, bending stiffness of the shell as well as gas compressibility and surface 
tension. Typical values of these parameters for the polymeric microbubbles investigated in the 

present dissertation are: 5ˆ 10bk −≈ , 4ˆ 10AP −≈  and 5 4ˆ 10 10BWγ − −≈ − . In the following the 
dimensionless r̂  and its derivatives will be r  for simplicity. Finally, an additional 

dimensionless parameter can be defined, ˆ ext o
ext

P RP
χ

= , as a measure of the intensity of the 

external disturbance. 
In addition, the polymers are, as already mentioned, stiff materials, characterized by 

high Young’s modulus (~GPa). Although it is not clear from the literature what the most 
appropriate constitutive equation is, some polymers are treated as strain hardening and 
therefore the Skalak law must be used. On the other hand the range of deformation in the 
AFM experiments is quite small, in which case the effect of a non-linear constitutive law is 
negligible. In the present formulation, Hook’s law is considered as the constitutive law, 
although the choice of the constitutive equation is left to be subject of parametric study. 
Moreover, the effect of pre-stress is also taken into account in order to capture gas leakage in 
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the aqueous phase, see also paragraph 2.5. Boundary conditions of axisymmetry are applied at 
the edges of the domain: 

0 at 0 and 1drr
dξ ξ ξ
ξ

= = = =  (2-36) 

2

2 0 at 0 and 1d
dξξ
θθ ξ ξ
ξ

= = = =  (2-37) 

0 at 0

  at 1
2

θ ξ
πθ ξ

= =

= =
 (2-38) 

The unknowns of the above formulation are the position of the lagrangian particles (r,θ), 
the gas pressure (PG) and the external applied point load (Pext). Finally, it is important to 
define deformation in order to compare the numerical results with the experimental. During 
the AFM measurements the deformation of the shell is not directly measured, but it is 
associated with the position of the cantilever. Therefore, in the present investigation the 
deformation is defined as the difference of the z-component of the position of the last contact 
node from its origin position in the undeformed configuration, Figure 2-3, in which case the 
situation with a buckled shell can also be accounted for. Multiplicity of solutions can be 
captured in this manner. More specifically, setting the angle θc in the undeformed shape on 
which the point load is applied two different solution families can be captured pertaining to 
the flat and buckled shape, the latter characterized by a lower value of the point load. The load 
for which such a multiplicity arises is the buckling point from which a new solution family 
emerges characterized by crater formation at the north pole of the shell. More details on this 
process is provided in Section 3 dedicated to the numerical solution and in Section 4 where the 
results of the simulations are discussed. 
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2.3.2 Phospholipid shell-Intermolecular forces 

 

Figure 2-4: Schematic representation of a microbubble covered with lipid compressed by a cantilever. 
(a) Referential state, (b) Deformed state. 

In the present paragraph, a microbubble covered with a lipid monolayer is investigated 
under the AFM, Figure 2-4, with the same symmetry conditions as with polymeric shells. The 
shell material is hydrophilic and soft in terms of elasticity (~MPa). As a result of its soft 
nature, the range of applied forces from the AFM is in [0-10] nN, which is in the order of the 
intermolecular forces. Moreover, due to the hydrophilic nature of the shell and cantilever, an 
ultrathin water layer occupies the space between them that resists thinning as the external 
pressure increases. This constitutes an additional resistance to the cantilever’s advancement 
which is modelled as an additional pressure of the water near the contact area in comparison 
with the bulk aqueous phase. This pressure difference is the sum of intermolecular forces that 
act between the water film (with thickness δ) and the shell and it is known as disjoining 
pressure [35, 36]. This concept is adopted here for the description of the interaction between 
the cantilever and the shell in the present formulation by introducing a long range attractive-
short range repulsive potential function. A typical form of the potential is: 

( )
4 2

2oW y W
y y
Α Αδ δ    

= −    
     

 (2-39) 

where δA denotes the distance where the potential takes the minimum negative value Wo, see 
also Figure 2-5. The energy due to intermolecular forces (IF) is: 

( )ˆ IF
A

w W y dA= ∫  (2-40) 

where dA is the infinitesimal deformed area of the shell with ( ) sin ddA d ds s r dξs ϕ θ ϕ ξ= = . 

PG 

PA 

(a) Reference State 

PG 
PA 

(b) Deformed State 

Cantilever Cantilever 

z 

δ 
y 

water 

water r(ξ) 
θ(ξ) 
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Figure 2-5: Potential (continuous line & left vertical axis) and disjoining pressure (dashed line & right 
vertical axis) as a function of the distance y from the substrate, with δΑ=50 nm and Wo=10-4 N/m. 

As the two bodies are quite far from each other (y>>δΑ) the potential is essentially zero 
and no interaction between the bodies is detected. While the cantilever approaches the shell, in 
other words y decreases, the potential has a decreasing negative value (y~δA). This is the 
regime where the two bodies are in attraction, the disjoining pressure and the resulting force 
are also negative. At y=δA the potential has a minimum value, this the point where the 
disjoining pressure and the force are zero and with further decrease of their distance (y<δA), 
the two bodies are in repulsion, thus the disjoining pressure and the force change sign. The 
total force is calculated by the integral of the disjoining pressure on the shell surface, with n 
pointing towards the surrounding liquid: 

A

WF dA
n

∂
= −

∂∫  (2-41) 

By minimizing the total energy the disjoining pressure and the potential are introduced 
in the components of the force balance [63] that assume the form: 

( ) ( )( ) ( )

( )

1:

1: 0

G A s ss BW s

ss
s ss s

q Wn P P k k W n
s n

t k q
s s

ϕ ϕϕ

ϕϕ

s
t t γ

s
t s t t

s

∂ ∂
− = + + + ∇ ⋅ − + ∂ ∂


∂ ∂  − + − + =  ∂ ∂ 



 



 (2-42) 

The dimensionless parameters in this problem are: 

2
ˆ ˆ ˆˆ ˆˆ ; ; ; ; ; 1b A o BW
b A BW o

o o o o o o

r k P Rr k P W
R W R W W W

γ χγ χ= = = = = =  (2-43) 

Measuring the relative stiffens of bending, stretching, gas compressibility and surface 
tension with respect to interfacial energy Wo of the two bodies interaction. Moreover, for the 
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lipid monolayers the bending stiffness and the area dilatations modulus are assumed to be 
independent parameters, since the shell thickness is a relative small parameter and cannot be 
easily defined [39]. Typical values of the above dimensionless parameters for the experiments 

examined here are: ˆ 1bk ≈ , 3ˆ 1.5 10AP = ⋅ , 2ˆ 10BWγ ≈  and 2ˆ 5 10χ ≈ ⋅ . In the rest of the problem 
formulation the dimensionless r̂  will be designated as r  for simplicity. In addition, the 
Mooney-Rivlin has been chosen as the constitutive law to relate the elastic tensions with 
strains. Alternatively, the above equations of equilibrium can be derived in terms of energy: 

f in
T TF z U U∆ = −  (2-44) 

where F is the total force that moves the cantilever by Δz and TU  is the total energy in the 
final and initial stage. Five energies constitute the total energy: 

ˆ ˆ ˆ ˆ ˆT str b c s IFU w w w w w= + + + +  (2-45) 

namely, energy due to stretching ˆ strw , bending ˆbw , gas compression ˆ cw , surface tension ˆ sw  
and the energy due to intermolecular forces, where, 

, Hook law
ˆ , with , Mooney-Rivlin law

, Skalak law

HK
str
MR

str str str str
SKA
str

w
w w dA w w

w


= = 



∫  (2-46) 

( )2 2ˆ 2
2
b

b b s s
A A

kw w dA K K K K dAϕ ϕν= = + +∫ ∫  (2-47) 

The above two energies refer to the energy due to elasticity and they are also described 
in details in section 2.2. 

2ˆ
1 1

G A BW
c A o A

P Pw V P P V P γ∆
γ γ

   + 
= + + − +   − −   

 (2-48) 

where, PA is the ambient pressure and Vο and Vι denote the initial and the current volume, 
respectively. 

ˆ s W
A

w dAΒγ= ∫  (2-49) 

It is important to note that the energy due to intermolecular forces can be interpreted as a 
deficit or excess energy in comparison with the case in the absence of the solid substrate. 
Consequently, when adhesive or very mild repulsive forces prevail the energy due to 
intermolecular forces is negative thus tending to stabilize the overall static configuration. This 
aspect of the interaction between hydrophilic phospholipid shells and the cantilever is crucial 
in the observed static arrangement when such shells are interrogated via AFM. 
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Furthermore, as in the case with a polymeric shell, the shell volume decreases as the 
external force increases and consequently the internal pressure increases. In order to capture 
the effect of pressure changes, an isothermal gas compression equation is written: 

G f A iP V P Vγ γ=  (2-50) 

Boundary conditions of axisymmetry are applied at the edges of the domain: 

0 at 0 and 1drr
dξ ξ ξ
ξ

= = = =  (2-51) 

2

2 0 at 0 and 1d
dξξ
θθ ξ ξ
ξ

= = = =  (2-52) 

0 at 0

  at 1
2

θ ξ
πθ ξ

= =

= =
 (2-53) 

In addition, the effect of pre-stress could also be considered, see paragraph 2.5. Solving 
the system of the above equations it is possible to calculate the shape of the deformed shell, 
the internal pressure and the required external force for various values of the elasticity 
(bending - stretching) and the potential parameters. The comparison of the theoretical results 
with available experimental data can be used to characterize the shell in terms of Young’s and 
bending modulus. However, some researchers characterize the lipid monolayers as shells 
without elasticity assuming that their behavior is dominated by surface tension only. In order 
to examine this argument, the elasticity terms of normal and tangential force balance are 
omitted. Then, the normal force balance reads as follows: 

( ) ( )( ): G A BW s
Wn P P W n
n

γ ∂
− = + ∇ ⋅ +

∂



   (2-54) 

Eq.(2-54) is known as the augmented Young-Laplace equation [62]. However, the tangential 
force balance becomes a trivial equation, as the derivative of the potential with respect to arc-
length s is a negligible term. Therefore, in order to balance the number of unknowns and 
equation, instead of the tangential force balance the arc-length equation is written: 

( ) ( ) ( )2 2 2rd dr dsθ + =  (2-55) 

where, dθ, dr and ds denote the infinitesimal lengths of θ, r and s, respectively. Thus, the 
nodes of the shell surface are equally distributed along the generator curve or alternatively the 
thickness of the elements is constant. In addition, if the lagrangian variable ξ is introduced, the 
arc-length is written in the following form: 
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2 2 2
2 2 2 2 2d dr dsr r r s

d d d ξ ξ ξ
θ θ
ξ ξ ξ

     
+ = ⇒ + =     

     
 (2-56) 

However, for equally distributed elements: max max
dss s s s
s ξξ
ξ

= ⇒ = = , where smax is the 

value of the arc-length at the end of the domain, where it takes its maximum value and it is not 
priori known, which consequently increases the number of the unknown variables. In order to 
handle the new unknown variable smax, the boundary condition (2-53) does not replace an arc-
length equation, but it is considered as an extra equation: 

  at 1
2
πθ ξ= =  (2-57) 

The equation of isothermal gas compression remains the same, as well as the rest of the 
boundary conditions. Solving again the equations of the modified formulation it is possible to 
treat the microbubble as a shell free of elasticity.  
  



29 
 

2.4 Formulation for a microbubble subject to a uniform pressure 

 

Figure 2-6: Schematic representation of a microbubble subject to a uniform load (a) Reference state 
(dashed line), (b) Deformed state-sphere (solid line), (c) Deformed state-asymmetric mode, (d) 
Deformed state-symmetric mode. 

The second problem that the present thesis investigates is the deformation of a 
microbubble subject to a uniform overpressure field ΔP, see Figure 2-6 (a). Initially, the 
microbubble’s shape is spherical characterized by a rest radius Ro. Up to a critical value of the 
external load ΔPcr the shell is compressed into a spherical shape with smaller radius R, Figure 
2-6 (b). However, with further increase of the external load and beyond its critical value the 
spherosymmetric configuration remains a possible static arrangement, but a second solution 
arises as a bifurcation, which is known as a buckling solution that corresponds to 
axisymmetric shells that are asymmetric or symmetric with respect to the equator, Figure 2-6 
(c), (d). The emerging solution family evolves subcritically towards larger volumes indicating 
an unstable branch. However, in the presence of a small but large enough geometric 
imperfection [54, 55], they become accessible in the presence of an external load of the same 
magnitude with the one leading to the compressed sphere. It must be noted that in Figure 2-6 
(c) and (d) the shell is plotted in [0, 2π] for visual reasons only. In order to capture the above 
series of solutions, the normal and tangential force balance are employed, assuming 
axisymmetry with respect to z axis: 

( ) ( ) ( )

( )

1:
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G A s ss BW s

ss
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s
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s s

ϕ ϕϕ

ϕϕ

s
∆ t t γ

s
t s t t

s

∂
− − = + − + ∇ ⋅ ∂
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 (2-58) 

The constitutive law could be Mooney-Rivlin, Skalak or Hook. The encapsulated gas is 
assumed to be ideal and undergoes isothermal compression: 

Ro R 

(b) 

PA+ΔP 

(a) 

PG 

ξ=0 

ξ=1 

(d) 

(c) 

r(ξ) θ(ξ) 

z z 

σ σ 
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G f A iP V P Vγ γ=  (2-59) 

Moreover, in order to avoid a net translation of the shell as a rigid body, the z 
component of the mass center is imposed to be zero. 

( )
1

3 2

0

0 0 cos sin cos sin 0
z

V
CG z

V

r e dV
z r e dV r r r d

V ξ ξθ θ θ θ θ ξ
⋅

= = ⇒ ⋅ = ⇒ + =
∫

∫ ∫

 

   (2-60) 

The σ component of the mass center is identically zero due to axisymmetry. Analogous 

dimensionless parameters can be defined as in the previous problems: 2
ˆ b
b

o

kk
Rχ

= , ˆ A o
A

P RP
χ

= , 

ˆBW
γγ
χ

=  and ˆ 1χ =  for both type of materials, assuming that for lipid shells the bending 

stiffness and the area dilatation are independent parameters. Finally, boundary conditions of 
axisymmetry are applied at the domain edges: 

0 at 0 and 1drr
dξ ξ ξ
ξ

= = = =  (2-61) 

2

2 0 at 0 and 1d
dξξ
θθ ξ ξ
ξ

= = = =  (2-62) 

0 at 0
   at 1

θ ξ
θ π ξ
= =
= =

 (2-63) 

Solving the above system of equations the r and θ coordinates of all lagrangian markers 
are calculated, along with the internal pressure PG, for different values of the parameter ΔP. 

As it is already mentioned, when the external load reaches a critical value it is possible 
to find different solutions for the same ΔP, which correspond to buckling of the shell into 
symmetric or asymmetric shapes. The new branch is characterized with one more negative 
eigenvalue in comparison with the main solution (sphere) for the same value of the ΔP and 
exists for smaller values of the critical load; therefore, this solution corresponds to a 
subcritical bifurcation. The theoretical value of the critical buckling load, obtained from 
continuous shell theory and performing linear stability analysis on the spherical configuration, 
in the limit of small overpressure to external pressure ratio crP∆ , is provided in [54]: 

( )

2

2

2

3 1
cr

o

E hP
R

∆
ν

 
=  

 −
 (2-64) 

Furthermore, calculating the total energy of the post-buckling solution it is possible to 
characterize the stability of the emerging branch in comparison with the main solution. 
Finally, following Tsiglifis & Pelekasis [38] the shape of the solution is decomposed in 
Legendre polynomials in order to calculate the dominant mode of the solution.  
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2.5 The effect of pre-stress 

As it was mentioned in the introduction, a gas phase is encapsulated in the shell core. 
The microbubble is a self-assembling structure and the initial radius corresponds to a stress-
free state, where no residual strains are acting. However, after some time and before the 
measurements with the AFM, some gas might escape through the protective coating and 
eventually cause a reduction in the shell volume and consequently induce initial compressive 
tensions. Therefore, in order to account for the effect of pre-stress in the present thesis, the 
dimensionless quantity u is introduced in order to quantify the amount of pre-stress: 

0SFR R u= −  (2-65) 

where RSF is the stress free shell radius and R0 is the radius at the beginning of the AFM 
experiment, Figure 2-7. In the above equation when u<0, the stress-free radius is bigger than 
the R0 radius, which means that some gas has been released in the aqueous phase and the shell 
is compressed and vice versa. Thus, at the beginning of the simulation the shell has residual 

strains
0

0s
R

R uϕλ λ= =
−

, resulting residual stresses ,ss ϕϕt t , which are calculated by the eqs. 

(2-15), (2-17) and (2-18). 
Moreover, it is assumed that the gas pressure in the stress-free state is equal to the 

ambient pressure, but if the surface tension and some pre-stress are also taken into account, 
then the initial gas pressure, PG, from normal force balance, (2-24) - (2-26), and for initial 
radius R0 is [38, 74]: 

2G A BW ssP P ϕϕγ t t= + + +  (2-66) 

In addition, it must be noted that even when the shell is not no pre-stressed the initial gas 
pressure will be different from the external pressure by a term 2 BWγ , as it is described by the 
Young-Laplace equation, due to surface tension. Another important point that arises from eq. 
(2-66) is that the increase in gas pressure caused by surface tension may be cancelled by the 
drop caused by compressive tensions (τss+τφφ<0) the amount of which strongly depends on the 
shell area dilatation modulus. 

 

Figure 2-7: Schematic illustration of a pre-stress microbubble.  
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Chapter 3. Numerical Analysis - Validation 
The third chapter describes the numerical methodology that is employed in 
order to solve the above problems. More specifically, the equations that 
describe the problems of the present dissertation constitute a set of nonlinear 
ordinary differential equations (ode’s), which are solved numerically via the 
finite element method (fem), with b-cubic splines as basis functions. The 
Newton-Rapson method is employed for the solution of the nonlinear algebraic 
problem that arises performing simple or arc-length continuation. 
Furthermore, benchmark calculations are conducted in order to investigate the 
validity of the above formulation and numerical implementation. 

3.1 Spline representation 

The modelling of the elasticity terms for thin shells with finite thickness requires the 
mathematical description of the first derivative of shear tension; therefore the derived 
equations contain high order derivatives. As a result, the basis function for the finite elements 
must be polynomials of high order and therefore the b-cubic splines are used, which are 
piecewise cubic curves and have the following form [75, 76]: 

( )
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 (3-1) 

where ℓ denotes the element thickness ( )1i iξ ξ+= − , which is the same for all elements, since 

in the present dissertation the mesh is uniform across the domain. As shown in Figure 3-1(a) a 
spline polynomial is a non-zero function on the inside of four continuous elements and 
therefore the Kronecker delta identity is not satisfied, in particular it is: 

( )
1, if

1 4, if 1  or 1
0, if 2  or 2

i j

j i
B j i j i

j i j i
ξ

=
= = − = +
 = − = +

 (3-2) 

 

Figure 3-1: (a) Schematic representation of Bi spline, (b) Spline representation into one element. 

(a) (b) 
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Hence, the unknowns r and θ at the nodes are different from the spline coefficients and 
they are described as follows: 

( ) ( )
1

0

N

j j
j

r a Bξ ξ
+

=

=∑  (3-3) 

( ) ( )
1

0

N

j j
j

b Bθ ξ ξ
+

=

=∑  (3-4) 

where aj and bj are the unknown coefficients of the spline representation and N is the number 
of nodes. The two coefficients that correspond to fictitious nodes outside the domain, i.e. ao, 
aN+1, bo and bN+1, are calculated by the boundary conditions of each problem. 

Also, b cubic splines maintain smoothness and continuity of higher order derivatives; in 
particular they ensure continuity of the function as well as of the first and second derivative. 
Therefore, upon integrating the terms of elasticity by parts twice the order of ode is reduced. 
Further discussion on the last topic can be found in the next paragraph (3.2). 

3.2 Weak form and Newton-Raphson method 

The governing equations of the above problems are two non-linear ordinary differential 
equations corresponding to the normal and tangential force balance. For their solution the 
Galerkin finite element method is employed in order to transform the ode into a set of non-
linear algebraic  equations [77, 78] that are solved for the r, θ coordinates of shell location. 
Initially the unknowns r, θ and their derivatives in the above equations are substituted by eqs 
(3-3) and (3-4) and then the differential equations is multiplied with the trial function and 
integrated over the shell surface. The new integral equation corresponds to the weak form of 
the differential equation. Subsequently, integration by parts is performed twice in the normal 
force balance, operating on the term that contains the shear tension derivative, in order to 
reduce the fourth order derivative. In the same manner, the derivative of τss tension in the 
tangential force balance is eliminated. All the resulting integrals are calculated by performing 
Gauss integration with four points over each element in the domain [-1,1], see also Figure 
3-1(b). In this fashion numerical error is dominated by the interpolation of the unknown 
functions instead of the gaussian integration [79]. In the following, the final equations in their 
weak form are written for each problem: 
The normal force balance: 

( ) ( )
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The tangential force balance: 

( )
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 (3-6) 

The isothermal gas compression: 

3 0 0GR P V P Vγ γ
Α= − =  (3-7) 

The kinematic condition: 

4 0 at cR z r cos r sinξ ξ ξθ θ θ ξ ξ= = − = =  (3-8) 

The arc-length: 

( ) ( )
1

0 5 0 52 2 2 2 2 2
5

0

0
. .

max max i
dSR S r r S r r B s d
d ξ ξ ξ ξ ξθ θ s ξ
ξ

 = = = + ⇒ − + =  ∫  (3-9) 

The position of the center of mass: 

( )
1

3 2
6

0

cos sin cos sin 0R r r r dξ ξθ θ θ θ θ ξ= + =∫  (3-10) 

where r sins θ= ; r sin r cosξ ξ ξs θ θ θ= +  and the square brackets contain the boundary terms 

resulting by the integration by parts. 
According to chapter 2, when the classic contact problem is investigated, the R1, R2, R3 

and R4 residuals are solved, with Wo=0 and ( )
0 otherwise
ext cP ,

P
,

ξ ξ
ξ

=
= 


. The contact model that 

accounts for the intermolecular forces, surface tension and elasticity is solved by the R1, R2 
and R3 residuals with P(ξ)=0. However, in the same contact model, if the elasticity terms are 
omitted, then the R1, R5 and R3 residuals are solved, setting χ=0 and kb=0. The equation that 
produces residual R5 is a statement regarding the distribution of Lagrangian markers on the 
shell. In particular it enforces the Lagrangian markers to be placed so that they form elements 
of the same length. Finally, for the bifurcation diagrams residuals R1, R2, R3 and R6 are solved 
with Wo=0 and ( ) [ ]0 1P P, ,ξ ξ= ∆ ∀ ∈ . It must be noted that the boundary terms vanish in 

both edges of the domain (ξ=0 and 1) for the problem with a homogeneous external load 
whereas they only vanish at ξ=0 in contact problems while remaining non-zero at the 
equatorial plane, i.e. at ξ=1, where symmetry conditions are imposed. In the latter case it is 
assumed that an equal force is applied on the shell from both poles and this reflects in the 
symmetry conditions at the equatorial plane. Consequently, the boundary terms are calculated 
for the three final residuals of the normal and tangential force balance. 
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Furthermore, the classic contact model contains a concentrated point force at the end of 
contact length which will introduce a discontinuity in the distribution of shear tension, q. The 
jump in shear tension is also supported by the b-cubic splines, because their third derivative is 
not a continuous function at the domain nodes. As it is already mentioned the b-cubic splines 
guarantee continuity up to the second derivative, therefore the in plane tensions and bending 
moments are continuous functions, a behavior which conforms well with the physical 
problem, where external moments or in-plane stresses are not acting on the shell. On the 
contrary, in the problem where the interaction between the cantilever and the shell is simulated 
in the presence of intermolecular forces, the external loading is a smooth function rather than a 
point force and therefore the distribution of the shear tension will follow the distribution of 
disjoining pressure. 

In the rest of the present session the Newton-Raphson method along with continuation 
techniques are discussed for the above systems of equations, which have the following form: 

( ) 0R x =




 (3-11) 

where x  denotes the unknown vector. Seeking for solutions of the eq. (3-11), the Newton-
Raphson [80] method is employed and then eq. (3-11) is written in the following form: 

[ ]J x Rδ⋅ = −


  (3-12) 

[J] denotes the jacobian matrix and contains the derivatives of all equations with respect to 
each unknown ( )ij i jJ R x= ∂ ∂ , xδ   is the correction of the unknown vector x , that move 

each function Ri closer to zero. The new potential solution is updated by the: 

NEW OLDx x xδ= +
    (3-13) 

and the whole process is iterated until convergence. Moreover, the jacobian matrix is 
calculated analytically and consequently the rate of convergence is quadratic [80]. Next, the 
jacobian for each problem is given in matrix form: 
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Figure 3-2: Jacobian matrix of the classic contact problem. 

The jacobian matrix for the classic contact problem is captured in Figure 3-2 and its 
dimension is ( ) ( )2 6 2 6N N+ × + , where N is the number of nodes. Moreover, in the first 

( ) ( )2 4 2 4N N+ × +  part of the above matrix the jacobian entries of normal (R1) and 

tangential (R2) force balance are written with respect to radius (aj) & theta (bj) coefficients, 
1,1, ∂

=
∂

ii
a j j

R
R

a
 and so on. It is important to notice that this part of the matrix has non-zero 

entries in a zone with bandwidth 15. Moreover, the last two rows contain the jacobian entries 
of the isothermal equation (R3) and the kinematic condition (R4), with respect to radius and 
theta coefficients. The last two columns contain the entries to the jacobian pertaining to the 
variation of the normal force balance with respect to the internal (PG) and external (Pext) 
overpressure. Therefore, the full matrix is of an arrow form and can be separated into four 
smaller matrices in order to avoid the storage of zeros out of the bandwidth. The four matrices 
are the banded part ( ) ( )2 4 2 4N N+ × + , the bottom ( )2 2 4N× + , the head (2×2) and the right 

part ( )2 4 2N + × . A typical form of an arrow matrix is depicted in Figure 3-3. 

 

Figure 3-3: Schematic illustration of an arrow matrix 

 

  
Banded 

(2N+4)×(2N+4) 

Bottom 
2×(2N+4) 

  
Right 

(2N+4)×2 

Head 
2×2 

[J]= 



37 
 

Finally, the boundary conditions (BC) of the problem are applied in the first three and 
the final three rows of the banded matrix. After storing the equations in the above form the 
jacobian is reversed by a standard routine, written for arrow matrices. Then the unknown 
vector is calculated via the Newton-Rapson as it is described above. Finally, for the classic 

contact problem the unknown vector is: ( )1 1, ,....., , ,....., , , ,
T

o o j j N N G extx a b a b a b P P+ +=


 with 

dimension 2N+6. 
The jacobian matrix that is produced from the problem that includes the adhesive 

potentialis of similar form. The main difference is that the kinematic condition is not applied 
and therefore the dimension of the jacobian is now ( ) ( )2 5 2 5N N+ × +  or alternatively the 

last row and column of the previous matrix are eliminated. In this case the unknown vector is: 

( )1 1, ,....., , ,....., , ,
T

o o j j N N Gx a b a b a b P+ +=


 with dimension 2N+5. 

However, in the case of the bifurcation diagrams the equation that fixes the center of 
mass (R6) replaces the tangential force balance in the N+2’th row. The jacobian entries of the 

mass center 6 6 and 
j j

R R
a b

 ∂ ∂
  ∂ ∂ 

 form a row-vector with non-zero entries in every column, Figure 

3-4. Therefore the jacobian is a full matrix and for its inversion the dgesv Lapack routine is 

used. The unknown vector is: ( )1 1, ,....., , ,....., , ,
T

o o j j N N Gx a b a b a b P+ +=


 with dimension 2N+5.  

The stability of a certain branch is determined by the number of negative eigenvalues 
corresponding to the converged solutions obtained for varying external overpressure. The 
eigenvectors corresponding to the unstable eigenvalues are calculated so that an initial guess is 
generated, which, for a suitable disturbance ε on the basic spherical configuration, will provide 
a large enough geometric imperfection that will direct Newton’s iterations towards the 
emerging subcritical branch [38]. 
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Figure 3-4: Jacobian matrix of the uniform pressure problem 

 

Figure 3-5: (a) Simple continuation and (b) Arc-length continuation around limit points 

In every problem, solutions are sought for different values of the control parameter. 
Therefore, a previously converged solution can be used as initial guess for a new solution 
corresponding to a new value of the parameter. This idea can be easily illustrated in the Figure 
3-5(a). Simple continuation is performed when the solution is smooth and without limit points. 
In this case the control parameter (p) changes independently by a step Δp: 
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1 Δ , where Δ 0 or 0i ip p p p+ = + > <  (3-14) 

Then, the corresponding solution is the 1ix +  and an initial guess for the Newton-Raphson 
procedure is provided by the 1, 0i k ix x+ = =

   solution vector. 
However, if the solution has a limit point, Figure 3-5(b), a solution in the direction that 

Δp predicts does not exist especially near the limit point and at the limit point the jacobian 
matrix becomes singular and then the simulation breaks, therefore the simple continuation is 
not the most appropriate technique to proceed the solution. In order to overcome this problem 
arc-length continuation is considered as an alternative, which is a standard technique for 
detection of instabilities in shells and drops [81, 82]. In this instance, one more equation is 
added in the formulation and the control parameter is now part of the solution. The extra 
equation is the arc-length written in the M-space of the solution: 

( ) ( )2 21 1 2

1

M
i i i i
j j

j
x x p pΦ ∆λ+ +

=

= − + − −∑  (3-15) 

where Δλ is a constant parameter to represent the arc-length of the solution branch in the M+1 
dimension space formed by the unknown vector and the parameter p. In the same way with the 
simple continuation, i

jx  denotes the last converged solution for the parameter pi. In order to 

estimate the value of the arc-length Δλ, as a first step simple continuation is performed before 
the limit point for a relative small value of Δp starting from the solution vector 0x  and moving 
to 1x , see Figure 3-5(c), thus it is possible to calculate the arc-length from the eq. (3-15). 
Consequently, adding eq. (3-15) in the formulation the jacobian of each problem has one more 
row and one more column. The augmented problem is now: 

j

j
p j j

x p

J R x R
p

δ
Φ Φ δ Φ

     
= −     

     
 (3-16) 

where [J] is the jacobian matrix as it is defined in the above problems; i
pR  is a column vector 

of dimension M and denotes the derivative of each residual with respect to the parameter p;

ixΦ  a M row vector, is the derivative of equation Φ with respect to all unknowns xi ; pΦ  is the 

derivative of Φ with respect to p, and δp is the update of p. It should be noted that even if the 
[J] becomes singular, the augmented matrix remains non-singular and therefore the simulation 
continues around limit points. 

After solving the system described by eq. (3-16) with the Newton-Rapson method, the 
initial guess for the next solution is made by solving the following set of equations: 

j

j
p j j

x p

J R x R
p

λ λ
Φ Φ λ Φ λ

  ∂ ∂ ∂ ∂   
= −     ∂ ∂ ∂ ∂     

 (3-17) 

note that 0jR λ∂ ∂ =  and 2Φ λ ∆λ∂ ∂ = − . Then the initial guess for the next solution is: 
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1
i

ji i
j j

x
x x δλ

λ
+ ∂
= +

∂
 (3-18) 

and the corresponding parameter is also: 

1
i

i i pp p δλ
λ

+ ∂
= +

∂
 (3-19) 

where for the first continuation with the arc-length (i=2), the initial guess of the derivatives 
1

jx
λ

∂

∂
 and 

1p
λ
∂
∂

is the following: 

[ ]
2 21 0 1 0

, 1,    and   j j jx x x p p pj M
λ ∆λ λ ∆λ

∂ − ∂ −
= ∀ ∈ =

∂ ∂
 (3-20) 

Finally, in the closure of the present paragraph, the steps in terms of an algorithm for 
each of the above problems are outlined. 

Classic contact problem: 

a) Initially, for a specific constitutive material law and geometry, the microbubble is 
assumed to have a spherical shape and the initial internal pressure is calculated by eq. 
(2-66). 

b) Then, an unknown external point pressure (Pext) is applied at the end of the first element, 
i.e. the angle θc pertaining to the Lagragian marker placed at the edge of the contact 
region in the undeformed configuration, is fixed to θc =π/(Number of Elements)/2. 

c) Solving the system of eqs.(3-5) - (3-8) with Newton-Raphson method the unknown 
position (r,θ) of the lagrangian particles is calculated, along with the external (Pext) and 
internal pressure (PG). 

d) After convergence is obtained, the new external point pressure is applied to the end of 
the next element, i.e. the angle θc is doubled, and the above calculation is repeated until 
a new solution is obtained. 

e) For every converged solution the required post processing is performed, in order to 
calculate the corresponding eigenvalues, force, energy and deformed shape of the 
solution. 

Similarly, for the adhesive potential model: 

a) At first, a spherical shape is assumed, with or without pre-stress for a specific 
constitutive material law, geometry and again the initial internal pressure is estimated by 
eq. (2-66). 

b) Then, the cantilever is positioned three or five bubble radius away from the shell. 
c) The system of eqs. (3-5), (3-6) or (3-9) and (3-7) is solved by Newton-Raphson method 

and the unknown shell position (r,θ) and the internal pressure (PG) are calculated. 
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d) Then, the process is repeated by decreasing the distance between the shell and the 
cantilever by conducting simple or arc-length continuation. 

e) Finally, post processing is performed, in order to capture the corresponding force, 
energy and deformed shape of the solution. 

Finally, for the uniform pressure model: 

a) For a spherical shape, with or without pre-stress, specific constitutive material law, 
geometry, the initial internal pressure is estimated by eq. (2-66). 

b) Then, a uniform static pressure is applied along the entire generator curve of the shell. 
c) The unknown position (r,θ) and the internal pressure (PG) are calculated by solving the 

system of eqs. (3-5) - (3-7) and (3-10). Then a new solution is requested by increasing 
the external overpressure with simple or arc-length continuation. 

d) In every solution, the eigenvalues of the corresponding jacobian matrix are calculated in 
order to seek buckling solutions around bifurcation points. 

e) At the end, post processing is performed, in order to calculate the corresponding 
bifurcation diagram, energy, the deformed shape and Legendre mode decomposition of 
the solution. 

In the Figure 3-6 a typical flow chart of the above steps is illustrated, when simple 
continuation is considered. For the arc-length continuation, the loop of p-steps is replaced by a 
do while loop: fp p≤ , where fp  is the value of the parameter p, where the solution is 

satisfactory evolved and the simulation can be terminated. 
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Figure 3-6: Flow chart of the numerical procedure. 
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3.3 Benchmark of formulation 

3.3.1 Benchmark of the classic contact problem 

In order to investigate the validity of the formulation developed in paragraph 2.3.1 
simulations are performed with parameters that Updike & Kallins [47] used in their work, i.e. 
E=109 Pa, Ro/h=100, kb=8·10-20 N·m, ν=0.3, γBW=0 N/m, γ=0, Hook’s law, no pre-stress and 
400 elements, where they solved the same problem for the contact region and assuming a 
spherical unloaded shell in the reference state. In this direction, the classic contact problem is 
solved with contact angle to be known and employing the kinematic condition described by 
the eq. (2-31), a pressure distribution is calculated along the contact length, see Figure 3-7, 
which is a zero function along the contact line and takes a non zero value at the end of contact 
All of the solutions correspond to flat shapes in the contact line, as the kinematic condition 
requires, and as it was previously discussed such a kinematic condition is not capable of 
predicting the buckling solution. However, the resulting pressure profile indicates that the 
unknown function can be replaced by an unknown point force at the end of the contact regime 
and thus the kinematic condition can be eliminated only at the last node of contact, eq. (2-32). 
Hence, performing again simulations with the above parameters a force-deformation curve is 
calculated and it is compared with the one from [47], see Figure 3-8 (a). During simulation the 
angle (θc) is the control parameter, i.e. a series of solutions is obtained by increasing the 
contact angle by a step cθ∆ .Figure 3-8(a) illustrates the dimensionless force required to obtain 
the deformation of the shell d/h, where d denotes the z-component of deformation of the last 
lagrange particle at the end of contact line and h the shell thickness. Updike and Kallins [47] 
describe the solution of the contact problem as the intersection of two solution branches. The 
first is the main branch, where the force-deformation is linear and the shell in contact region is 
flat, and the secondary branch with non-linear response and buckling of the shell. This 
response is recovered in the present thesis by employing the formulation developed in 
previous session. More specifically, the linear and the non-linear response are depicted in 
Figure 3-8(a) with white squares and triangles, respectively, while the solution of Updike and 
Kallins follows the continuous black line. The results of the present analysis are in good 
agreement with [47] for both branches, justifying that the present formulation is an appropriate 

 

Figure 3-7: Pressure distribution when θc=1.5°(solid line), θc=3.5° (dash line) and θc=4.5° (dot line)  
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Figure 3-8: (a) Force-deformation curve, comparison between the present analysis (white squares and 
triangles) and Updike & Kallins (continuous black), (b) Total energy of deformed shell for flat and 
buckling solutions, (c) & (d) Microbubble in deformed configuration, flat and buckling solutions, for 
different values of the cantilever position. The axes are dimensionlized as it is described in paragraph 
2.3.1 

model to describe the contact between a spherical and elastic shell against a flat and rigid 
surface. Typical mesh refinement calculations verify the above response. The corresponding 
shapes of the shell in different deformed states are illustrated in Figure 3-8(c) and (d). The 
shell in the flat solution is characterized by a zero curvature area around the contact region, 
while the buckling solution shapes have a progressively larger dimple in the north pole region 
with negative curvature and at the end of contact a small region is formed with high curvature, 
where most of bending energy is concentrated. 

The stability of the solution is investigated by performing further analysis and 
calculating the eigenvalues of the jacobian matrix. The linear part of the force-deformation 
curve has one negative eigenvalue, but after the buckling point the same curve has one more 
negative eigenvalue. However, the buckling curve has the same number of negative 

(a) 

(b) 

(c) 

(d) 
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eigenvalues with the pre-buckling curve, which means that the buckling point is also a 
bifurcation point and corresponds to a supercritical bifurcation. Moreover, the linear curve 
after buckling is an unstable solution, due to higher total energy (i.e. the sum of energies from 
stretching, bending and gas compression) in comparison with the non-linear solution for the 
same value of deformation, see also Figure 3-8(b). 

Thus, during simulation the microbubble spontaneously follows the stable buckling 
solution, while in order to obtain the flat solution after the buckling point special manipulation 
of the contact elements is required. More specifically, for the buckling solution to be followed 
a step 6.75cθ∆ ≈ ° is employed while the flat solution is obtained by selecting a smaller value 

for 2.25cθ∆ ≈ ° . Moreover, the change in the number of negative eigenvalues can also 
provide the buckling point in terms of the corresponding values for the critical deformation 

and force. In this fashion the calculated buckling point via FEM is ( )
610, 2.4,120

2
ext

o

d P
h EhRπ

 
= 

 
, 

while in [47] it is ( )2.5,130 , and the corresponding contact angle from FEM is θc=9o and from 

[47] θc=8o.  
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3.3.2 Benchmark of the uniform pressure problem 

The formulation of a microbubble subject to a uniform overpressure field (paragraph 
2.4) is investigated for its validity by performing simulations with the same parameters that 
Knoche & Kierfeld [59] use. In [59] a spherical axisymmetric vessel is subject to a negative 
internal pressure assuming given volume or pressure. The former case corresponds to a shell 
filled with incompressible fluid, while the latter is a shell that contains a gaseous phase, even 
though the compressibility is neglected. Therefore, the most suitable case is the second and 
more specifically a case which corresponds to relatively stiff shell with 2 310b ok Rχ −= , where 
the internal pressure is not a dominant resistance, which means that the effect of 
compressibility could be omitted or if it is incorporated in the modelling it will not 
significantly affect the results. Following the above scenario, simulations are performed with: 
E=2.64·108 Pa, Ro=2·10-6m, h=1.9·10-7 m, kb=2·10-13 N·m, ν=0.5, γBW=0 N/m, γ=1.07, Hook’s 
law and no pre-stress. Figure 3-9(a) illustrates the evolution of different solution branches in 
the plane defined by the dimensionless external overpressure, ΔP/Pcr, and the relative volume 
change between the deformed and the initial state of the shell, V/Vo; a uniform mesh of 200 
and 400 elements was used for the discretization of the shell surface and agreement was 
verified between the numerical solution (FEM) of the present study and the [59]. 

Initially, as the shell is compressed by a uniform overpressure ΔP, the relation between 
loading and volume is a linear curve (black line), the shape of the shell is spherical with a 
decreasing radius and the jacobian matrix has one negative eigenvalue. However, with further 
increase of the absolute value of the external pressure the number of negative eigenvalues 
rises to two. The corresponding eigenvector is used with a small imperfection in order to 
calculate the initial guess for the secondary branch solution. The numerically obtained 
diagram confirms that the asymmetric branch (red line) emerges first as the dominant 
instability for ΔP = 3.2·106 Pa, that is, roughly, 0.92 of the theoretical value (ΔPcr), eq. (2-65). 
This is in direct agreement with the critical value taken from a similar diagram in [59]. 
Furthermore, the secondary bifurcation leading to a symmetric solution family (dark green 
line) was also recovered. Therefore, agreement between the two approaches is justified, 
despite the different treatment of the internal pressure variation adopted herein, due to the 
negligible resistance to compression of the microbubble indicated by the very small value of 
the dimensionless pressure, 34 10A oP R χ −= ⋅ . 

Furthermore, the asymmetric branch is linearly unstable with two negative eigenvalues 
whereas the symmetric branch that follows is characterized by three negative eigenvalues. 
Both branches evolve subcritically and have more total energy than the spherical branch, 
Figure 3-9(b). Therefore, they require imposition of a geometric disturbance of a certain 
amplitude, in the form of the eigenvector provided by stability analysis as was explained 
above, on the base spherical shape in order to perform parametric continuation along them. 
The evolution of both branches was followed for a wide range of external overpressures, also 
in agreement with the above study, and the minimum external overpressure for nonlinear 
transition to an asymmetric shape to be possible, starting from the spherical configuration, was 
recovered. In particular, the spherical branch for 0.92crP P∆ =  and 0.91oV V =  has one more  
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Figure 3-9: (a) Bifurcation diagram-Comparison between the present analysis and literature, (b) 
Bifurcation diagram in terms of total energy, (c) Evolution of spherical solution shapes, (d) Evolution 
of asymmetric solution shapes and (e) Evolution of symmetric solution shapes. The almost spherical 
shapes in (d) and (e) correspond in the bifurcation point and then a sequel of solutions is presented 
dominated by the asymmetric and symmetric eigenmode, respectively, for reduced shell volume. 

negative eigenvalue and the corresponding eigenvector is dominated by P3 Legendre 
eigenmode, which with a small disturbance (ε~10-2) is imposed on the last spherical shape and 

(a) 

(b) 

(c) 

(d) 

(e) 
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through simple continuation the new solution branch is evolved. When the solution is on the 
asymmetric branch further disturbance on the eigenvector is not required. On a same way the 
symmetric branch is evolved from the spherical branch, but starting from 1.05crP P∆ =  and 

0.9oV V = , when the spherical solution has on more negative eigenvalue and disturbing the 
corresponding eigenvector dominated by the P2 Legendre eignemode. The deformed shapes 
associated with the above solutions are presented in Figure 3-9(c), (d) and (e) for reduced shell 
volume. The spherical shell is dominated by the P0 Legendre eigenmode, associated with 
volume changes, while the asymmetric and symmetric shapes are dominated by the P3 and P2 
modes, respectively. 
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Chapter 4. Numerical results: Simulation of a microbubble under the AFM 
In the fourth chapter of the present thesis the numerical models developed 
previously are employed in numerical simulations that investigate the static 
response of coated microbubble under the AFM. Subsection 4.1 contains 
numerical results for the classic contact problem, while the results for the 
model that accounts for the intermolecular forces are presented in session 4.2. 
In both problems, a reference case is initially studied and then an extensive 
parametric analysis is carried out in order to investigate the role of the 
different parameters on the equilibrium. In the case of the classic contact 
problem for microbubbles covered with polymeric material the two solution 
families corresponding to flat and buckled shapes are recovered, confirming 
that the buckling stage is energetically favorable. When microbubbles covered 
with phospholipid monolayers are investigated with the intermolecular forces 
model, buckling is not seen to take place and the shell around the contact area 
remains flattened, when the dimensionless bending modulus is relatively high, 

2
0/ ( ) 1bk Rχ > . The parametric study for both problems shows that the elasticity 

moduli, namely stretching and bending, tend to increase the slope in f-d curve. 
Similar behavior is observed when the surface tension of shell-water interface 
is accounted on the equilibrium. A pre-stressed shell with compressive residual 
stresses has lower slope than a shell with zero residual stresses and vice versa 
when the residual stresses are tensile. Furthermore, the gas compressibility 
acts as an extra stiffness on the shell, when the relative importance of the gas 
pressure to area dilatation modulus is higher than one; 0 / ~ 1StP R χ . This fits 
well with the lipid monolayers, while for the polymeric shells the effect of gas 
compressibility is negligible in the regime of small deformations. Especially for 
the intermolecular forces problem the adhesive energy per unit area can also 
affect the f-d curve. Through the parametric analysis it is shown, that when the 
interaction potential Wo increases not only the slope of the f-d curve increases, 
but also the amplitude of the maximum adhesive force; 0 / ~ 1W χ  .Thus two 
cases are investigated pertaining to weak and strong adhesion. In addition, the 
characteristic length δA does not affect the slope of the f-d curve, but as δA 
decreases the response around the maximum adhesive force becomes sharper. 
In the same context, three regions along the shell are defined; the contact, the 
transition and outer regimes depending on the disjoining pressure profile. The 
lengths of the above regimes are also part of the parametric analysis, where it 
is shown that the length of transition regime is decreased as the length δΑ 
decrease and the energy Wo increase. Surface tension tends to decrease the 
contact length, while the transition remains unaffected. Finally, on the 
intermolecular forces problem, an additional case is investigated, where the 
microbubble is assumed to be free of elasticity, and then it is the surface 
tension and the gas compression that balance the disjoining pressure. 
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4.1 The classic contact model 

4.1.1 Study of single microbubble 

Chapter 2 contains two formulations for the static response of a coated microbubble 
under the AFM and, as it was explained there, the shells covered with polymeric material 
behave like conventional shells. Thus for their description a classic contact formulation is 
adopted, while a model with intermolecular forces is developed for shell covered with lipid 
monolayers; see below for results. In addition, in paragraph 3.3.2 it was shown that the 
distribution of the applied contact force may be treated as a line load that vanishes everywhere 
on the shell except for the circular arc that joins the contact with the free area. Hence, due to 
axisymmetry, it is possible to replace the load distribution with an unknown point load at the 
end of the contact region. Thus, in the first subparagraph of the present chapter the 
methodology developed for the classic contact problem, paragraph 2.3.1, is employed and 
simulations with simple continuation are performed for the investigation of the static response 
of a microbubble in terms of the f-d curve, post-buckling behavior, the energy distribution of 
each solution branch and the tensions - moments along the shell. In order to facilitate 
comparison between different types of shells we use the area dilatation, χ, and bending 
resistance, kb, throughout this study, with the understanding that for polymeric shells the 
elasticity modulus, E, and shell thickness h are the more relevant physical shell parameters. 
For the purposes of the present study, the parameters of Table 4-1 are considered, which are 
similar with the ones that Glynos et al. [29] employ for the estimation of shell properties for 
biSphere microbubbles via AFM. The relevant dimensionless numbers are: 

( )
2

5 3
2 2

0

1ˆ ˆ ˆ3 10 ; 3 10 ; 0; ,
12 1

b A o BW
b A BW

o

k P Rhk P Eh
R R
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χ χ χν

− − 
= = = ⋅ = = ⋅ = = = 

−  
 

Initially, the cantilever is imposed on top of the shell and for a known contact angle; 
1.8cθ = ° , a solution is seeking and by performing simple continuation with 1.8c∆θ = ° a series 

of solution is obtained, where the resultant force can be calculated for some deformation of the 
shell. As it is already described the deformation in f-d curves is defined as the displacement of 
the current cantilever position from its original. Thus, a f-d curve is obtained for the 
parameters assumed here, Figure 4-1(a), and the two branches of solution are recovered. The 
linear branch is characterized, as in benchmark calculations, by one negative eigenvalue and at 

105 , 435 and 11cd nm F nN θ= = = °  a bifurcation point appears that leads to the second 
solution branch, which also has one negative eigenvalue, that is initially curved downwards,  

Shell thickness: 47h nm=  Young’s modulus: 1.7E GPa=   
Initial radius: 2.75oR mm=  Poisson ratio: 0.42v =   
Constitutive law: Hook  Pre-stress: 0u mm=   
Surface tension: 0BW N mγ =  Polytropic index: 1.07γ =  400 elements  
Table 4-1: Simulation parameters for the force-deformation curve of a microbubble covered with 
polymer. 
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while at relatively high deformation tends to curve upwards. The linear branch continues 
further from the bifurcation point, but now has two negative eigenvalues, indicating that this 
part of the solution is unstable. This is also in agreement with the total energy of the two 
solutions, Figure 4-1(b), where it can be seen that the total energy content of the secondary  

 

Figure 4-1: (a) Force-deformation curves, (b) Total energy-deformation curves of flat and buckling 
solutions, (c) and (d) Shape of deformed microbubble for selected values of deformation 
corresponding to flat and buckling solutions (The cylindrical coordinated system (σ, z) is 
dimensionalized with the initial radius Ro.) and (e) and (f) Components of total energy for the pre- and 
post-buckling stages. The axes and elasticity moduli are dimensionalized as it is described in paragraph 
2.3.1. 

(a) 
(b) 

(d) (c) 

(f) (e) 
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solution is smaller in comparison with that of the linear branch as this evolves beyond the 
bifurcation point, hence the former is energetically favorable. The corresponding shape of the 
microbubbles in the linear part of the f-d curve is flat whereas buckling has taken place in the 
non-linear part, Figure 4-1(c) and (d). In addition, the total energy components are 
demonstrated in Figure 4-1(e) and (f) for the flat and buckling solutions, where the energy 
due to bending becomes higher than stretching after the buckling point, which is reasonable 
because after the bifurcation point the area around contact is an almost mirror image of the 
initial unstretched spherical cap. As a result the energy due to stretching increases with a 
lower slope. In addition, the energy due to gas compression is initially negligible, however 
beyond a certain level of deformation, d≥500 nm, it starts to increase as it acts as an additional 
stiffens on the equilibrium thus explaining the upwards curved f-d curve. Moreover, with 
further post processing calculations the distribution of total energy components is plotted 
against the distance from the axis of symmetry, σ, for two configurations that correspond to 
pre- and post-buckling stages, Figure 4-2(a) and (b), respectively. In the pre-buckling solution 
most of the elastic energy is concentrated near the contact area for 0.2s ≤ , with the energy 
due to bending being slightly higher than stretching. The distribution of bending energy is 
significantly higher than stretching in the buckling solution and has a pick at the end of 
contact, where a dimple is formed with small curvature. The shell outside the contact area 
remains almost spherical, thus both elastic energies vanish. 

Another interesting result that characterizes the solution and gives a more complete 
picture of the shell deformation is the distribution of in plane and shear tensions along with 
bending moments. In Figure 4-3(a) and (b) the tensions are depicted as function of the 
distance from the axis of symmetry, σ, for the pre- and post-buckling solutions. In both cases, 
the in plane tensions τss and τφφ have negative values, which means that the shell is under 
compression especially in the contact area, where most of the deformation is located. 
Moreover, the shear tension q is almost zero along the shell, except at the points 0.2s =  and 

0.5s = , where the external point force is applied. This is in direct agreement with the classic 
theory. In addition, the bending moments mss and mφφ are equal and almost constant along the 
contact area in the pre buckling stage, Figure 4-3(c). In both pre- and post-buckling the 
discontinuity of the shear tension at the end of contact is reflected as gradient discontinuity in 
the bending moments, as it is expected by the theory, see eq. (2-20). Finally, around the end of 
the contact area, positive moments are concentrated, because a dimple is formed with high 
curvature. 
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Figure 4-2: Distribution of energies due to stretching and bending along the distance from the axis of 
symmetry, σ. (a) Pre-buckling stage with deformation d=100 nm and (b) Post-buckling stage with 
deformation d=400 nm. The elasticity moduli and the surface tension are dimensionalized as it is 
described in paragraph 2.3.1 and the horizontal axis with the initial radius Ro 

 

Figure 4-3: (a) and (b) Distribution of in plane and shear tensions in flat (d=100 nm) and buckling 
solution (d=400 nm), respectively. (c) and (d) Distribution of bending moments in flat (d=100 nm) and 
buckling solution (d=400 nm), respectively. The elasticity moduli are dimensionalized as it is 
described in paragraph 2.3.1 and the horizontal axis with the initial radius Ro. 

  

(a) (b) 

(c) (d) 
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4.1.2 Parametric Study 

In the following session a parametric study is carried out in order to investigate the 
effect of different parameters that are involved in the shell equilibrium, namely stretching and 
bending rigidity, constitutive law, pre-stress, surface tension and gas compressibility. The 
rigidities that are associated with elasticity are the most extensively investigated parameters 
through the years for such a classic problem, however, for the sake of completeness in the first 
part of the present paragraph the effect of elasticity moduli is studied. In addition, the case 
investigated in subsection 4.1.1 will be used as the reference case. 

Effect of elasticity moduli (stretching-χ & bending kb) 

Initially, a microbubble is investigated, which in comparison with the case studied in 
subsection 4.1.1, see Table 4-1, has twice the stretching and bending modulus, E=3.4 GPa or 
χ=159.8 N/m and 143.6 10bk Nm−= ⋅ . Thus the dimensionless bending modulus remains the 

same: 5
2

ˆ 3 10b
b

o

kk
Rχ

−= = ⋅  and the dimensionless ambient pressure 3ˆ 1.5 10A o
A

P RP
χ

−= = ⋅  

decreases, i.e. the gas compressibility is less important than rigidity. In Figure 4-4(a) the f-d 
curve of the above case is compared against the one from subsection 4.1.1 , to be referred to as 
reference case henceforth for brevity. The f-d curve of the new microbubble has higher slope, 
as it was expected since it is a shell with higher rigidity. This will be verified in Section 6 
where the asymptotic analysis by Reissner, pertaining to the linear regime of the f-d curve, 
will be presented for spherical shells compressed by a rigid plate. There it will be seen that the 
slope of the linear part of the f-d curve is proportional to the elasticity modulus E. 
Furthermore, the bifurcation point of the case shown in Figure 4-4(a) occurs at the same 
deformation and contact angle, i.e. 105 and 11cd nm θ= = ° , but the required force is higher. 

However, the two elastic shells have the same dimensionless bending modulus, b̂k , or 
alternatively the same ratio thickness to radius, thus in dimensionless form the two curves 
coincide, Figure 4-4(b), for the most part. On the other hand, the two buckling curves respond 
differently in higher deformations because the third rigidity of the equilibrium, i.e. the gas 
compressibility, starts to become important. In the reference case the dimensionless pressure is 

3ˆ 3 10AP −= ⋅ . Consequently, the compression of the encapsulated gas is relatively more 
significant, in comparison with the stretching rigidity, for the reference case than in the case 

examined here with 3ˆ 1.5 10AP −= ⋅ . 
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Figure 4-4: Comparison of f-d curves with different elasticity moduli and the same dimensionless 
bending modulus, 5ˆ 3 10bk −= ⋅  (a) Axes with dimensions and (b) Dimensionless axes. 

In the next of a microbubble with higher dimensionless bending is investigated with the 
same simulation parameters as in Table 4-1, but with h=94 nm. Consequently, the 

dimensionless numbers are: 4ˆ 10bk −=  and 3ˆ 1.5 10AP −= ⋅ . As can be gleaned from Figure 
4-5(a) depicting the f-d curve, for both flat and buckling solutions the required force is higher 
than the reference case. In addition, the buckling branch of the  

(a) 

(b) 
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Figure 4-5: Comparison of f-d curves with different elasticity moduli and dimensionless bending 
modulus, b̂k  (a) Axes with dimensions and (b) Dimensionless axes. 

4ˆ 10bk −=  case emerges from the flat solution at around 220 and 16cd nm θ= = ° . Thus, the 
dimensionless bending modulus controls the position of the bifurcation point and the onset of 
buckling. In the present numerical study the bifurcation point is a clear and sharp change in f-d 
curve and the detection of the bifurcation point in experimental-AFM data could be of great 
importance in order to estimate the elastic properties (χ, kb) of the elastic coating, based on the 
deformation and force exerted at the onset of bifurcation. 

  

(a) 

(b) 
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Effect of gas compressibility 

In the next part of the present parametric analysis the effect of the gas compression is 
specifically studied. In the reference case the gas is assumed to undergo isothermal variations 
of its pressure, i.e. as the volume is reduced the gas pressure increases. This is a constraint 
added to problem formulation in order to account for the compressible nature of the gas. For 
conventional shells that are either very rigid or operate in the regime of small deformations, 
such a constraint is not necessary. Thus the formulation follows in general what Updike & 
Kalnins [46-48] suggest for the present analysis without the isothermal equations. To this end, 
gas compressibility may be omitted by setting the polytropic index, γ=0, which leaves the 
internal pressure constant and the shell volume independent from pressure. Figure 4-6(a) 
compares the resultant f-d curve for the buckling solution when γ=0 with the compressible gas 
case. As it is seen, after a level of deformation on the order of d=300 nm the required force is 
higher, because the internal pressure starts to increase significantly and its impact on the 
composite bubble rigidity reflects in the more rapid rise of the f-d curve, Figure 4-6(b). 
However, the onset of the bifurcation point is not affected by the consideration of gas 
compressibility since it occurs at a lower deformation. Even if the gas compression is 
accounted for in the formulation, the response of the f-d curve remains unaffected by the gas 
compression, bold line in Figure 4-6(a), especially at low deformations. This is attributed to 
the low dimensionless gas pressure, 3ˆ 1.5 10AP −= ⋅ , which is a measure of the relative stiffness 
of gas compression to elasticity stiffness. Next, a case with relative high dimensionless 
pressure is examined, which has ˆ 1AP =  and 5ˆ 3 10bk −= ⋅ . It should be stressed that these 
parameters do not correspond to the properties of a shell covered with polymeric biomaterial, 
but they are employed only for the purposes of comparison. When ˆ 1AP = , the required force 
for buckling increases significantly, but the bifurcation point remains the same, Figure 4-7(a). 
In addition, as the shell is deformed, the internal (or gas) pressure increases in both cases, but 
its relative importance in comparison with the area dilatation modulus is greater when ˆ 1AP = . 

 

Figure 4-6: (a) Comparison of f-d curves for compressible and incompressible gas and (b) Gas 
pressure as function of volume. 

(a) (b) 
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Figure 4-7: Comparison of (a) f-d curves of two microbubbles with the same dimensionless bending 
modulus 5ˆ 3 10bk −= ⋅  and different dimensionless pressure; the solid curves correspond to negligible 

internal (or gas) pressure ( )3ˆ 3 10AP −= ⋅  and the solid-dot line to a larger internal pressure ( )ˆ 1AP = , (b) 
Zoom in the bifurcation regime. 

  

(a) (b) 
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Effect of pre-stress 

In the present part of the parametric analysis the effect of pre-stress is investigated, 
assuming initially that the microbubble has lost some of the encapsulated gas. Thus, the shell 
volume decreases, compressive initial stresses are developed on the shell and consequently the 
starting point is not a stress-free state. In order to study the above scenario, a microbubble is 
considered with the same parameters as in the reference case, but an amount of pre-stress is 
assumed in the form of an initial radial displacement of u=-10-3 μm. In Figure 4-8(a) the f-d 
curves for both pre- and post-buckling solutions of the pre-stressed shell are compared against 
the reference case, where zero residual stresses are assumed, u=0. As it can be gleaned the 
required force decreases significantly especially in buckling branch and the bifurcation point 
is shifted to lower values of force and deformation (d=98 nm, F=360 nN and θc=10°). In 
addition, eq. (2-67) predicts the initial gas pressure when the shell is pre-stressed. Thus, in the 
present case the internal pressure is less than the ambient since the surface tension is zero, 
Figure 4-9(a). Hence, the combined rigidity of the shell is smaller and this reflects in the 
lower slope of the equilibrium f-d curve. The results are exactly the opposite when the shell is 
assumed pre-stressed, but with tensile stresses. The bifurcation point is shifted to higher values 
of force and deformation (d=120 nm, F=560 nN and θc=12°). Based on the same concept as 
before the initial internal pressure is higher than the ambient and the combined rigidity of the 
shell is larger than the reference state, hence the larger slope 

 

Figure 4-8: Comparison of f-d curves with pre-stress: (a) Compressive residual stresses, u= -10-3 μm 
and (b) Tensile residual stresses, u= +10-3 μm. 

(a) (b) 
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Figure 4-9: Comparison of gas pressure-volume curves with pre-stress: (a) Compressive residual 
stresses, u= -10-3 μm and (b) Tensile residual stresses, u= +10-3 μm for buckling branches.  

(a) (b) 
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Effect of surface tension 

Next the effect of the surface tension on the f-d curve is investigated for the classic 
contact problem when γBW=4·10-3 and 4·10-2 N/m. Figure 4-10(a) and (b) compare the 
response in f-d curves for both cases. Surface tension is seen to increase the resistance to shell 
compression by increasing the force required to achieve a certain deformation, especially at 
large deformation levels. The bifurcation point remains the same as in the reference case when 
γBW=4·10-3 N/m, but is moved to slightly higher values of force and deformation when 
γBW=4·10-2 N/m (d=120 nm, F=545 nm and θc=12°). As in the study of the pre-stress, the 
initial gas pressure is estimated by eq. (2-67). Thus when the surface tension is considered the 
initial gas pressure is higher than the ambient by a term of magnitude 2γBW. Hence, as the 
volume decreases the gas pressure increases as well, but for each of the above cases it acquires 
a different starting value, see also Figure 4-11. In particular, when γBW=4·10-2 N/m gas 
compressibility is a significant resistance, and this explains the increased external load 
required in order to achieve a certain deformation. 

 

Figure 4-10: Comparison of f-d curves for different values of surface tension (a) γBW=4·10-3 N/m and 
(b) γBW=4·10-2 N/m against the reference case with γBW=0 N/m. 

 

 

Figure 4-11: Comparison of gas pressure-volume curves for different values of surface tension (a) 
γBW=4·10-3 N/m and (b) γBW=4·10-2 N/m against the reference case with γBW=0 N/m for the buckling 
branch.  

(a) (b) 

(a) (b) 
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4.2 The intermolecular forces model 

4.2.1 Study of a single microbubble 

In the second part of the fourth chapter numerical results are demonstrated obtained with 
the model that accounts for the intermolecular forces between the cantilever and the elastic 
shell (see paragraph 2.3.2), which is mainly proposed for microbubbles covered with lipid 
monolayer. In contrast with lipid bilayers that have relatively high area dilatation 
modulus,χ~0.1 N/m, in comparison with their bending stiffness, kb~10-19 Nm 2 6~ 10 ,b ok Rχ −

and thus they are modeled as vessels with constant area [63], a microbubble covered with a 
phospholipid monolayer has bending stiffness that more comparable with the area dilatation 
modulus. Thus, a microbubble with the parameters of Table 4-2 is considered. The above 
parameter values are taken from previous relevant studies [16, 29, 83], giving rise to the 
following dimensionless numbers: 

3 3
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Figure 4-12: Schematic representation of the relative position of microbubble and cantilever: (a) The 
bodies are at relatively long distance-attraction (F<0), (b) Position of the maximum attraction, a small 
area around the pole is at distance y=δΑ=0.033 (F=0), the rest of the shell is in attraction (F<0 or y>> 
δΑ) and (c) Cantilever and microbubble are close, where the contact area is in repulsion (F>0 or y<δΑ) 
and the rest of the shell remains in attraction (y>>δΑ). 

Bending 
modulus: 

163 10bk Nm−= ⋅  Area dilatation 
modulus: 0.05 N mχ =   

Initial radius: 1.5oR mm=  Poisson ratio: 0.5v =   
Constitutive law: Mooney-Rivlin, (b=1)  Pre-stress: 0u mm=   

Surface tension: 0BW N mγ =  Polytropic 
index: 1.07γ =   

Potential depth 410oW N m−=  Potential length 50A nmδ =  400 elements  
Table 4-2: Simulation parameters for the force-deformation curve of a microbubble covered with lipid 
monolayer. 

z=1.5 

F<0 z=1.05 F<0 

z<1 F>0 

F=0 

F<0 

y=0.033 
(a) 

(a) 
(b) (c) 
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Figure 4-13: (a) Force-distance, (b) Distribution of the disjoining pressure along the distance from the 
axis of symmetry, (c) Force-deformation curve and (d) Microbubble in deformed configuration for 
selected values of deformation, (the axes z and σ are dimensionalized with the initial radius Ro). 

Initially, the cantilever is placed in the reference spherical state at a vertical distance of 
z=1.5 from the shell equator, measured in terms of the initial radius R0. Performing simple 
continuation by decreasing the vertical distance z the cantilever is seen to approach the shell. 
The resultant force is very small and negative for 01 / 1.05z RδΑ>> + ≈ , Figure 4-12(a), 
while the shape remains almost spherical because the whole shell and the cantilever are at a 
relatively long distance. However, as the cantilever approaches the shell (z ↓) the force 
remains negative, Figure 4-13(a), but its amplitude increases significantly in order to 
counteract the attractive force between the shell and cantilever. At around 1.05z = , the force 
reaches a maximum negative value. This is the point where the dimensionless water film 
thickness δ/R0 is about 0.033, in dimensional form δ=50 nm≈δΑ, which is the characteristic 
length δΑ where the disjoining pressure and the force are zero, first curve in Figure 4-12(b), 
but the rest of the shell (the part not near pole) is still at relatively long distance from the 
cantilever. Ιn this part of the shell the disjoining pressure is negative and therefore the 

(a) 

(b) 

(c) 

(d) 
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resultant force over the entire shell is still negative, i.e. attractive. The magnitude of this force 
represents the required pull-off force in order to overcome the resistance against increasing the 
water film thickness. For 1.033z < , the water film decreases further, and the disjoining 
pressure around the pole becomes positive signifying the repulsive force between the shell and 
cantilever at very small distances, Figure 4-12(c). Therefore the total force turns to smaller 
negative values and eventually acquires positive values corresponding to overall repulsion; see 
also the distribution of the disjoining pressure along the distance from the axis of symmetry in 
Figure 4-13(b). As can be gleaned from the latter figure, there is a distance z, where the 
repulsive (positive) force is equal with the attractive (negative) force where the resulting total 
force on the shell is zero. The last value of z is used as reference for the estimation of the shell 

deformation, ( )0i i od z F z R= = −   , and the construction of the f-d curve that can be 

compared against experimental results. The progressively larger positive force required for 
larger deformations to be exhibited corresponds to the larger and larger repulsive force that 
needs to be overcome as the liquid film is thinning. 

 

Figure 4-14: Distribution of the principal curvatures along the distance from the axis of symmetry (σ) 
(a) Mean curvature (km), (b) curvature on s direction (ks) and (c) curvature on φ direction (kφ). 

 

 

(a) 

(b) (c) 
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In the present case ( )0 1.01z F = = . The f-d curve, Figure 4-13(c), is almost linear in 

the initial part and tends to curve upwards in higher values of deformation, indicating that 
buckling is not taking place, as it is expected from the analysis in paragraph 4.1. This becomes 
evident by plotting the shape of the microbubble in deformed configuration for selected values 
of deformation, Figure 4-13(d), where it can be seen that the shape around the contact area 
remains flattened. Moreover, the first deformed shape has negative deformation, because it 
corresponds to the point of the maximum adhesive force, i.e. it is the point where the shell 
undergoes the maximum attraction by the cantilever. The disjoining pressure around the 
contact area is not a constant function which means that the water film does not have a 
constant height (y). This is a result of the elastic nature of the shell coating that allows for 
small indentations of the shell near the pole. It is also of interest that the point where the 
disjoining pressure becomes zero is moved to the right as the deformation increases. Upon 
careful cross-examination of the deformed shape, the point where the disjoining pressure starts 
to increase can define the end of the contact regime, see vertical lines in Figure 4-13 (b) and 
(d). In between the previous point and the outer region it exhibits a maximum negative pick 
and after taking negative values it crosses to positive values in the outer region. This area can 
define a transition regime between the contact and outer regions of the shell, with the latter 
region characterized by zero disjoining pressure. Following this concept, the length of the 
transition regime is ~ 0.45 . Furthermore, plotting the principal and the mean curvatures 
along the deformed shell, Figure 4-14, it can be seen that there are small deviations from zero 
in the part of the shell that is in contact with the cantilever, and consequently the contact area 
is almost flattened. Moreover, at the end of the contact area, the curvature starts to increase 
and reaches values around one, which means that the shell exhibit a deformation in the area 
away from the contact as well. The interaction of the shell with the cantilever can also be seen 
in terms of the relative energies, namely stretching, bending, gas compression, adhesive 
potential and surface tension. The last energy is zero for the case investigated in this 
paragraph. In Figure 4-15(a) the total energy (the sum of all of the above energies) is plotted 
as a function of the deformation, while the relative importance of each of the energy 
components is depicted in Figure 4-15(b). For large negative deformations, the cantilever is 
away from the shell, thus all of the energy components vanish. As the cantilever approaches, 
the first energy that starts to increase is the energy due to adhesive potential, reflecting 
reduction of the film thickness that exists between the shell and the cantilever. When the 
attraction becomes strong enough, the energy due to stretching and bending start to increase as 
well. The energy due to bending is higher than stretching for deformation less than 200 nm 
and vice versa for higher deformations. On the other hand the energy due to gas compression 
is almost zero for deformation less than 300 nm, however for higher deformations the gas 
compression energy starts to increase introducing an additional stiffness on the equilibrium. 
Finally the energy of the adhesive potential is always negative, because the film even though 
is compressed, its height never becomes so small so that the potential becomes positive, see 
also Figure 2-5. The last result indicates that the presence of the adhesive potential reduces 
the total energy, thus leading to more stable configurations. Moreover, the above energies can 
be illustrated for selected values of deformation along the distance from the axis of symmetry, 
Figure 4-16. In the contact area the energy due to  
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Figure 4-15: (a) Total energy as function of the deformation, (b) Components of the total energy as 
function of deformation. The dimensionalization of axes is based on paragraph 2.3.2. 

bending is higher in comparison with the energy due to stretching for all of the selected 
deformations, but in the rest of the shell the opposite happens. The energy due to adhesive 
potential has a slight variation along the contact area, which is due to non-constant height of 
the film, as it is was explained above, and has a local maximum indicating a compression of 
the film ( y δΑ< ) and a local minimum at the end of the contact area ( y δΑ= ), where the 
disjoining pressure becomes zero. In the rest of the shell the potential tends to zero as the 
relative distance between the shell and the cantilever is quite large. 

Finally, Figure 4-17 illustrates the distribution of the stresses and bending moments 
along the shell as a function of the distance from the axis of symmetry. When the shell is at 
the maximum attraction, tensions and moments are positive, because as it can be seen from 
Figure 4-17(d), the shell is elongated. When the force becomes positive (repulsive), the shape 
is compressed and the in plane stresses become progressively negative, with τss being 
compressive in the entire shell and τφφ only in the contact area, Figure 4-17(a) and (b). In the 
transition and the outer regimes τφφ is positive, thus in φ direction of these two regimes the 
shell is elongated and the point where τφφ changes sign coincides with the end of the contact 
region. In contrary with the previous model, paragraph 4.1, where the applied load is 
concentrated at a point and therefore the shear tension is a non-zero function only at the 
contact point, in this case the shear tension q, Figure 4-17(c), has a smooth distribution along 
the shell, reflecting the distribution of the applied disjoining pressure. As it can be seen, most 
of the shear tension is concentrated at the end of the contact region and its largest negative 
value is shifted on the right as the deformation increases and so does the contact length. The 
shear tension in the outer regime is very small and positive, indicating that, as it was described 
earlier, the shell has some deformation in this regime. In a similar way, the bending moments 
mss and mφφ are constant and equal in the biggest part of the contact regime and before the end 
of this regime they start to increase and become zero at the end of contact, Figure 4-17 (d) and 
(e). In the transition regime, the bending moments are positive and increase, while in the outer 
regime they are also positive, but decrease. 
 

(a) (b) 
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Figure 4-16: Distribution of the energy per unit area due to stretching, banding, surface tension and 
adhesive potential (right vertical axis) along the distance from the axis of symmetry (σ) for selected 
values of deformation (a) d=-60 nm, (b) d=100 nm, (c) d=200 nm, (d) d=300 nm, (e) d=400 nm, (f) 
d=500 nm and (g) d=600 nm. The dimensionalization of axes is based on paragraph 2.3.2. 

(a) (b) 

(c) (d) 

(e) (f) 

(g) 
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Figure 4-17: Distribution of the (a) in plane stress τss, (b) in plane stress τφφ, (c) bending moment mss, 
(d) bending moment mφφ and (e) shear stress q along the distance from the axis of symmetry (σ) for 
selected values of deformation. The dimensionalization of the axes is based on paragraph 2.3.2. 

  

(a) (b) 

(c) (d) 

(e) 
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4.2.2 Parametric Study 

In this subparagraph parametric study is performed in order to investigate the effect of 
different parameters of the shell coating in f-d curves, the deformed shapes and the contact, 
transition and outer regimes. The microbubble that was investigated in paragraph 4.2.1, pure 
elastic shell, is the reference and by changing one parameter a new case is studied in 
comparison with the first one. In the next, the effect of elasticity moduli, constitutive law, pre-
stress, adhesive energy per unit area, surface tension and gas compression are investigated, in 
order to draw a complete picture of their influence, since in the literature the available 
experimental or numerical investigations for the estimation of the relevant properties of lipid 
monolayers are very limited. 

Effect of the elasticity moduli (stretching-χ & bending kb) 

In paragraph 4.2.1 it was assumed that the area dilatation modulus is 0.05 N mχ =  and 

the bending modulus is 163 10bk Nm−= ⋅ . Thus the dimensionless bending modulus is 
3ˆ 2.7 10bk −= ⋅  and the relative importance of gas compression to area dilatation modulus is 

ˆ 3AP = . As it was shown in parametric analysis of the classic contact problem, when ˆ 1AP ≥  
the gas compression is an important rigidity and thus affects the f-d curve even in small values 
of deformation. Therefore, in order to vanish its influence and consequently study the effect of 
elasticity moduli only, parametric analysis is carried out in the space of the dimensionless 

number b̂k  with ˆ 1AP  . Thus, the following cases are initially considered with:
13 14 153.4 10 , 3.4 10 , 3.4 10 , 51bk Nm N mχ− − −= ⋅ ⋅ ⋅ = , while the rest of the parameters are the 

same as in Table 4-2. Hence, the corresponding dimensionless bending modulus is 
3 4 5ˆ 3 10 , 3 10 and 3 10bk − − −= ⋅ ⋅ ⋅  and the dimensionless pressure 3ˆ 3 10AP −= ⋅ . In addition, it 

should be stressed out that the above parameters, especially χ, do not necessarily correspond to 
microbubbles covered with phospholipid monolayer, but they are chosen for the purposes of 
the present parametric study. In Figure 4-18(a) the corresponding f-d curves are compared in 
dimensionless form, where the cases with the lower dimensionless bending stiffness exhibit a 
non-linear response associated with buckling of the shell around the contact area, Figure 

4-18(b) and (c). On the other hand, the response of the 3ˆ 3 10bk −= ⋅  case is strongly linear; 
indicating that buckling is not taking place, see also Figure 4-18(d), while the shape remains 

mostly spherical away from the contact region. In addition, the case with 5ˆ 3 10bk −= ⋅  
corresponds to a buckled shell which, around the dimple that is in contact with the cantilever, 

has a gradually higher curvature in comparison with the one from the case with 4ˆ 3 10bk −= ⋅ , 
which is a result of the increase of the dimensionless bending modulus, see also Figure 4-19. 
In the latter two cases the shape of the shell in the crater region resembles that of an inverted 
sphere with the same radius as the original shell. Moreover, the disjoining pressure of the 
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buckled cases is demonstrated in Figure 4-20, where it can be seen that when the shell is in 
the buckling stage the disjoining  

 

 

Figure 4-18: (a) Comparison of f-d curves for different values of the dimensionless bending modulus 
and negligible internal pressure, Shape of the microbubble in deformed configuration with (b) 

5ˆ 3 10bk −= ⋅ , (c) 4ˆ 3 10bk −= ⋅  and (d) 3ˆ 3 10bk −= ⋅ . 

(a) 

(c) (d) 

(b) 
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Figure 4-19: Mean curvature distribution along the distance from the axis of symmetry, σ. (a) 
5ˆ 3 10bk −= ⋅ , (b) 4ˆ 3 10bk −= ⋅  and (c) 3ˆ 3 10bk −= ⋅ . The axes are dimensionlized with the initial radius Ro. 

(a) 

(b) (c) 
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Figure 4-20: Disjoining pressure distribution along the distance from the axis of symmetry, σ. (a) 
5ˆ 3 10bk −= ⋅ , (b) 4ˆ 3 10bk −= ⋅  and (c) 3ˆ 3 10bk −= ⋅ . The horizontal axis is made dimensionless with the 

initial radius Ro. 

 

 

 

Figure 4-21: Comparison of f-d curves corresponding to classic contact model and the intermolecular 
forces model with weak (Wo=10-4 N/m) and strong (Wo=10-1 N/m) adhesion, for (a) 5ˆ 3 10bk −= ⋅ and (b) 

4ˆ 3 10bk −= ⋅ ; 3ˆ 3 10AP −= ⋅ . 

(b) 

(a) 

(c) 

(a) (b) 
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-6
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pressure vanishes in the crater region, because the height of the liquid film is relatively large, 
and takes a non-zero value at the end of the dimple, which is practically in contact with the 
cantilever. In the last area the film is compressed and then the disjoining pressure takes a finite 

value. In case with 4ˆ 3 10bk −= ⋅  the disjoining pressure is almost three times larger than the 

values of the case 5ˆ 3 10bk −= ⋅ , which indicates that the liquid film is more compressed in the 
latter case. It should also be stressed that the load distribution in the above cases conforms 
with that of a line distribution at the end of the dimple, panels a,b, and contact region, panel c. 
This justifies the approximation adopted by Updike and Kalnins [47-49], where they extended 
Reissner’s solution for a uniform load distribution on a shallow thin shell, to solve the case 
with a line load at a prescribed angle with respect to the axis of symmetry as a means to 
simulate the case of a rigid flat plate compressing a spherical shell. The methodology 
introduced in the present study for the simulation of such contact problems provides a more 
realistic load distribution, for both hard and soft shells, that validates this approach. It will be 
seen in the following sections, where a comparison is provided between the simulations 
performed in the present study and the available AFM measurements of polymeric and lipid 
shells, that this is a very useful approach for obtaining asymptotic approximations on the f-d 
curves for both types of shells. 

Furthermore, the cases with the lowest bending modulus have similar dimensionless 

parameters with the case investigated in paragraph 4.1.1, 5ˆ 3 10bk −= ⋅  3ˆ 3 10AP −= ⋅ , thus it is 
interesting to compare the response of the two contact model in the same graph, see Figure 
4-21. The weak adhesion case, Wo=10-4 N/m, has almost the same response with the classic 
contact model, but when the adhesion is strong, Wo=10-2 N/m, the required force is higher and 

buckling is postponed, 5ˆ 3 10bk −= ⋅ , or even bypassed, 4ˆ 3 10bk −= ⋅ . The latter is clearly a result 
of the stabilization effected on the shell response by the adhesive action of the cantilever. The 
simulation via intermolecular forces captures the stable response pattern whether that involves 
buckling or just a prolonged Reissner type response and this constitutes a powerful tool for 
simulating contact problems for a wide range of configurations. 

Next, in order to cover the second case of this part of parametric analysis simulations are 
also performed in the space of the dimensionless bending modulus, but for a microbubble 
where the internal pressure is important. Thus the following parameters are considered:

15 16 17 183 10 , 3 10 , 3 10 , 3 10 0.05bk Nm and N mχ− − − −= ⋅ ⋅ ⋅ ⋅ =  and therefore, the 

dimensionless numbers are: 2 3 4 5ˆ 2.7 10 , 2.7 10 , 2.7 10 and 2.7 10bk − − − −= ⋅ ⋅ ⋅ ⋅  and ˆ 3AP = . Thus, 

the case with 3ˆ 2.7 10bk −= ⋅  corresponds to the pure elastic case investigated in paragraph 
4.2.1. In Figure 4-22(a) the resulting f-d curves of the above four cases are compared, where 
the response of all curves is initially linear while exhibiting a non-linear curved up-wards 
behavior at large deformations, indicating that even a shell with small bending stiffness will 
remain almost flat when it is symmetrically compressed from above and below, see also 
Figure 4-22(b)-(d). Hence, in contrast with similar shells which have the same dimensionless 
bending modulus, here the compressibility of the gas acts as an extra rigidity that postpones 
buckling. Moreover, as the shell is compressed, the area around the equator is expanded, as 
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opposed to buckled shapes for which the shape remains almost spherical. In addition, the shell 

with the highest elastic rigidity, 2ˆ 2.7 10bk −= ⋅ , has the highest slope in the f-d curve being 
strongly linear for small deformations turning non-linear beyond relative deformation 

0.3od R = . On the other hand, the magnitude of the required force for the same deformation 
does not scale with the dimensionless bending stiffness. In fact non- linearity starts at a lower 

 

Figure 4-22: Comparison of f-d curves for different values of the dimensionless bending modulus and 
important internal gas pressure, Shape of the microbubble in deformed configuration with (b) 

2ˆ 2.7 10bk −= ⋅ , (c) 4ˆ 2.7 10bk −= ⋅  and (d) 5ˆ 2.7 10bk −= ⋅ . 

 

(a) (b) 

(c) (d) 
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deformation 0.1od R ≈ , which means that there is another rigidity that becomes important 
and hence the response is changed. The calculation of the total energy components for each of 
the above cases, Figure 4-23, reveals that the value of deformation for which the energy due 
to gas compression starts to become important is the same as the one for which the non-linear 
response sets in the f-d curve. Additional calculations of the disjoining pressure distribution 
along the distance of the shell surface show that in the stiffer shell the disjoining pressure 
exhibits a strong peak at the edge of the contact region, Figure 4-24(a), in contrast with softer 

shells with the same dimensionless pressure parameter ÂP . In fact, as b̂k  decreases, the 
distribution of the disjoining pressure has a plateau along the contact area, indicating that the 
film in this area has a progressively decreasing and almost uniform height. Finally, in the 

transition regime for the lower value of b̂k  is ~ 0.25  and for the highest ~ 0.55 , thus b̂k  
increases, the transition also increases. 

 

Figure 4-23: Components of total energy for the cases with (a) 2ˆ 2.7 10bk −= ⋅ , (b) 4ˆ 2.7 10bk −= ⋅  and 

(c) 5ˆ 2.7 10bk −= ⋅ . The moduli of the vertical axes are dimensionlized as it is described in 2.3.2. 

(a) 

(b) (c) 
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while the transition and outer regimes, σtr and σout, decrease. However, for the case of the 

lowest bending modulus, 5ˆ 2.7 10bk −= ⋅ , the transition length is almost the same as that for the 

case with 4ˆ 2.7 10bk −= ⋅ , revealing that the dependence of kb and σtr is non-linear. 

 

Figure 4-24: Disjoining pressure distribution for the cases with (a) 2ˆ 2.7 10bk −= ⋅ , (b) 4ˆ 2.7 10bk −= ⋅  

and (c) 5ˆ 2.7 10bk −= ⋅ . 
  

(a) 

(b) (c) 
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Effect of the constitutive law (Hook and Mooney-Rivlin) 

One of the main purposes of the present thesis is to characterize the constitutive 
behavior of the elastic coating. Thus, two constitutive laws are compared here, in order to 
understand their influence, when the intermolecular forces are also accounted for. In this 
direction, the purely elastic case is investigated once again (Mooney-Rivlin, b=1), but by 
assuming initially the linear constitutive law, Hook’s law, and then the strain softening 
Mooney-Rivlin law with b=0 and 0.5. At this point, it is reminded that the parameter b defines 
the non-linearity of Mooney-Rivlin law, which takes values in the interval [0, 1]. The case b=0 
corresponds to a neo-Hookean membrane whereas as b tends to zero the membrane becomes 
softer. The case of a strain-hardening material, i.e. Skalak’s constitutive law, is not examined 
here, because in the relevant literature [13, 16, 67, 68] phospholipid monolayers are usually 
considered as strain-softening materials. In this context, in Figure 4-25 the f-d curves of the 
above cases are compared and it is seen that the influence of the constitutive law is negligible, 
even though the relative deformation is quite high ( )500 1.5 0.33 or 33%nm mε m= =  in 

which case it was expected by Barthes et al. [68] that the change of constitutive law will affect 
the f-d curve. It should however be stressed that Barthes et al. [68] investigate, among other 
aspects, the effect of constitutive law on uniaxial loading. In the present study strain softening 
shells are mainly investigated whose effective elasticity modulus decreases when the area they 
occupy is expanded. Consequently the resulting f-d curve has different slope in comparison 
with linear materials. Furthermore, the shell shape is not uniformly deformed, in other words 
the area around the contact regime is compressed while the area in the transition and outer 
regimes is expanded. This becomes evident by calculating the stretching ratios λs and λφ for 
selected values of deformation along with the second invariant of the strain tensor I2, which is 
a measure of the local area change as function of the distance from the axis of symmetry for 
the pure elastic case. As it can be gleaned from Figure 4-26, the second invariant I2 is 
negative in the contact regime and it is positive in the rest of the shell. Thus, assuming a strain 
softening material, the effective elasticity modulus increases in the contact area and decreases 
in the rest of the shell leaving the average behavior almost the same like in the neo-Hookean 
case. Nevertheless, the overall force required to achieve a certain deformation tends to 
decrease as the degree of softness of the shell increases, i.e. as shell parameter b approaches 
zero, since a larger part of the shell, namely the outer region of the shell, becomes increasingly 
softer. 
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Figure 4-25: Comparison of force-deformation curves for different constitutive laws. 

 

Figure 4-26: (a) Microbubble in deformed configuration, (b) Second invariant I2 of the strain tensor, 
(c) Stretching ratio λs and (d) Stretching ratio λφ for selected values of deformation as function of the 
distance σ from the axis of symmetry, assuming the neo-Hookean constitutive law. 

  

(a) 

(b) 

(c) 

(d) 
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Effect of pre-stress (u) 

As was mentioned above the microbubbles may lose some of their inner gas due to 
diffusion through the elastic membrane towards the liquid phase. Gas leakage causes an initial 
reduction of the shell volume and consequently residual compressive tensions develop on the 
shell before any interaction with the cantilever takes place. In this subsection, the effect of pre-
stress is investigated by employing the formulation of paragraph 2.5, for gas leakage (u<0) or 
gas absorption (u>0), which is unlikely to happen when AFM measurements are considered. 
In the latter case, the residual stresses on the shell are tensile, because the volume of the pre-
stressed shell increases. It should be stressed that parameter u defines the change of the initial 
radius in comparison with the stress-free state radius, see also paragraph 2.5. Hence, in Figure 
4-27(a) the cases of gas leakage (u<0) and gas absorption (u>0) are compared in terms of f-d 
curves with the pure elastic shell, where the residual stresses are assumed to be zero (or u=0). 
As can be surmised by this figure, when the shell is assumed to have lost some gas the 
resulting force is smaller. On the contrary when the shell gains some gas it is higher. 
Moreover, the shape of the f-d curve of each case is the same, i.e. it is like a family of curves 
where the effect of a lower and higher internal pressure is depicted. In other words, when the 
shell is pre-stressed its initial internal pressure is estimated by eq. (2-67) for γBW=0. Thus, 
when the u<0, the initial internal pressure is less than the ambient and therefore the effect of 
gas compression is less important on the normal force balance. The opposite happens when 
u>0. Figure 4-27(b) shows how the internal gas pressure changes as the shell is compressed 
(V↓), where V and Vi signify the current and the initial shell volume, respectively. The gas 
pressure increases as the shell is compressed, V/Vi<1, for all three cases, but the starting 
pressure is different. Hence, the required force is also different; see also the discussion in the 
subsection below dedicated to the effect of gas compressibility. In particular, a compressive 
prestress tends to reduce the force required for a certain deformation to take place since the 
overall shell rigidity, including volume compressibility, is lower when gas leakage has taken 
place; this is also clearly illustrated in the f-d curves shown in Figure 4-27(a). The disjoining 
pressure distribution of the two pre-stressed shells has minor differences in comparison with 
the pure elastic shell, thus the lengths of contact, transition and outer regimes remain the same. 
In addition, the corresponding shape is more or less flat. However, for large enough 
compressive residual stresses buckling does take place. In fact the existence of prestress tends 
to accelerate buckling on an otherwise similar shell; see also the discussion below when 
surface tension is accounted for. 
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Figure 4-27: (a) Comparison of force-deformation curves for pre-stressed shells and (b) Pressure-
volume curves for pre-stressed shells.  

(a) (b) 
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Effect of the adhesive energy per unit area (Wo-δA) 

Upon introducing the disjoining pressure in the formulation of the static response of a 
coated microbubble two more parameters must be considered, namely the wetting parameter 
Wo and the characteristic length δA. In Figure 2-5 the functions that describe the adhesive 
energy and the disjoining pressure are plotted against the distance from the cantilever for 

410oW N m−=  and 50 nmδΑ = , and it is seen that the minimum value of the adhesive 
energy is 10-4 when distance y= δA. Moreover, this is also the point where the disjoining 
pressure becomes zero. Consequently, it is important to explain how these two parameters 
affect the f-d curve, especially when AFM measurements are considered. Thus, simulations 
are performed for the purely elastic shell, i.e. no surface tension, while incorporating the 
interaction potential between the shell and cantilever as a means to obtain the load 
distribution. The cases with 2 3 4 510 ,10 ,10 and 10oW N m− − − −=  are examined setting 

 to 50 nmδΑ . 
Figure 4-28 demonstrates how the f-d curve changes for various values of the adhesive 

per unit area energy Wo. The lower values of Wo are considered as cases of weak adhesion, 
while the higher values correspond to strong adhesion between the shell and cantilever. This 
becomes mostly evident in the respective f-d curves. In the case of weak adhesion, Figure 
4-28(a), the f-d curve of a pure elastic microbubble (Wo=10-4 N/m) is compared against the f-d 
curves of microbubbles with Wo=10-5 and 10-3 N/m. The lowest value of Wo=10-5 does not 
significantly differ from the pure elastic curve, and the resulting adhesive force at maximal 
attractionis almost zero, see also embedded diagram in Figure 4-32(a). On the other hand, 
when Wo=10-4 or 10-3 N/m not only is the repulsive force higher for the same deformation as 
in the pure elastic case, but also the magnitude of maximum attraction, ~ -1 nN and ~ -5 nN, 
respectively. In Figure 4-28(b) the f-d curve pertaining to the case of strong adhesion, W0=10-

2 N/m, is compared against the f-d curve obtained for weak adhesion when W0=10-4 N/m. The 
trend is again the same, i.e. the increase of Wo leads to a higher adhesive force while a 
stronger repulsive force is required to achieve the same deformation. In particular the 
maximum attractive force is on the order of -40 nN when Wo=10-2 N/m. Both effects are due 
to the stronger interaction between the shell and cantilever that generates significantly larger 
forces for the same distance between the cantilever and shell center of mass. It must also be 
noted that the initial position of the cantilever for weak adhesion is set to z=1.5, as in 
paragraph 4.2.1. However, a dimensionless distance of z=1.5 is a position of interaction 
between the shell and the cantilever in the case of strong adhesion, Wo=10-2 N/m, and 
consequently an initial position of z=3 for is used in the latter case. In addition, the increase of 
Wo leads to f-d curves, where the relative position of cantilever and shell is not a 
monotonically decreasing function. Thus, the arc-length continuation is the most appropriate 
way to proceed with the numerical solution. In the case of strong adhesion, continuation to 
small cantilever-shell separations occurs through the onset of two limit points that generate a 
hysteresis loop. It corresponds to the pull-off force required to equilibrate the strong adhesive 
force exerted on the shell by the cantilever. 
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Figure 4-28: Comparison of force-deformation curves for different values of the adhesive energy per 
unit area (Wo), (a) Weak adhesion and (b) Strong adhesion. 

The shape of the microbubble when Wo=10-3 N/m, Figure 4-29(b), is almost the same as 
in the case of a purely elastic shell, Figure 4-29(a), but the solution that corresponds to the 
maximum attractive force has a more spherical shape. As Wo increases the attraction is 
stronger, hence the shape that corresponds to the onset of repulsion is gradually more 
deformed in the pole area, i.e the thin line in Figure 4-29(b). During attraction and repulsion 
the shape of microbubbles for Wo in the interval between 10-5 and 10-3 N/m is characterized by 
obtuse wetting angles. However, in the case of the strongest adhesion the wetting angle is 
close to 90° as deformation increases, Figure 4-29(c). In addition, the values of deformation 
that are listed in the above graphs, corresponding to each one of the deformed shapes shown, 
refer to the equivalent f-d curve. As Wo increases the calculated deformations, see paragraph 
4.2.1, differ significantly in the sense that they are based on the location of the pole in the 
reference configuration that registers a zero force. When the adhesion is strong a zero force 
does not correspond to a spherical shape. On the contrary, the position of the pole is 
significantly deformed; hence the resulting deformation differs from the actual pole 
displacement. During the AFM experiments that are discussed in the next chapter the adhesion 
is negligible. As a result, the measured deformation is very close to the pole displacement 
from its position corresponding to the spherical configuration. Consequently the above 
concept is a potential way that incorporates the interaction potential constitutes a promising 
alternative for obtaining the load distribution and simulating the static response of shells 
during contact experiments.  In particular, identifying the maximal attraction during an AFM 
experiment provides a reliable means to estimate the interaction potential between the shell 
and cantilever. This can be combined with an optical measurement of the evolution of the 
contact length and the slope of the force-deformation curve in order to provide estimates of the 
area dilatation and bending stiffness. More details on this analysis are provided in the last 
chapter of this Thesis. 

(a) (b) 
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Figure 4-29: Microbubble in deformed configuration for selected values of deformation, (the axes z 
and σ are dimensionalized with the initial radius Ro). (a) Wo=10-5N/m, (b) Wo=10-3 N/m and (c) 
Wo=10-2 N/m. 

The corresponding diagrams of the disjoining pressure distribution are shown in Figure 
4-30. The disjoining pressure for the case with Wo=10-5 N/m is the same as for the purely 
elastic shell, but weaker in the transition regime. An indicative load distribution for the purely 
elastic case is provided in the context of the approximation adopted in [48] that is very similar 
with the one obtained in the above figure, see also Figure 3-7 from the previous section. As 
Wo increases the disjoining pressure reaches higher values, the contact length increases and 
the size of the transition regime is gradually compressed. Especially in the strongest adhesion 
case, the contact regime has zero disjoining pressure, which means that the height of the film 
is δΑ, and the disjoining pressure is non zero only in the very thin transition regime. The last 
case recovers the formulation of the classic contact problem, where the applied load is a non-
zero point function at the end of contact. Thus, it can be assumed that the formulation of 
paragraph 4.1 is a limit case of the present analysis. More details on this approach are 
provided in the last section where a comparison with experiments is presented and the 
derivation of asymptotic approximations is carried out.  

(a) (b) 

(c) 
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Figure 4-30: Distribution of the disjoining pressure along the distance from the axis of symmetry. (a) 
Wo=10-5N/m, (b) Wo=10-3 N/m and (c) Wo=10-2 N/m. 

The energy due to intermolecular forces depends also on the characteristic length δA, 
where the energy is minimized or the disjoining pressure is zero. In the next, the effect of δA in 
f-d curve is investigated by performing simulations for the pure elastic shell

( )450 nm and W 10o N mδ −
Α = = , but for different values of δΑ, i.e. 12.5, 25, 50, 75,δΑ =  

100 and 150 nm all of them with 410oW N m−= . As can be seen from Figure 4-31(a) the 
resulting force does not significantly change in comparison with the pure elastic case. 
However, the only important effect pertains to region around the maximum adhesion force, 
Figure 4-31(b). As δΑ increases, 75,100 and 150 nm , the response becomes smoother, while 
for smaller values of δA, 12.5 and 25 , the pick of adhesion force is sharper. The amplitude of 
the distribution of the disjoining pressure is not affected by changing the δΑ length. However, 
the contact and transition lengths are compressed, but the outer regime is expanded as the 
length δA decreases and vice versa when δA increases. a theoretical interpretation of the above 
trends is offered in chapter 6 where a comparison against experiments and an asymptotic 
analysis are presented. 

(a) (b) 

(c) 
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Figure 4-31: (a) Comparison of f-d curves for different values of δΑ. (b) Focus on the maximum 
adhesion area in f-d curve. 

  

(a) (b) 
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Effect of the surface tension (γBW) 

AFM experiments and clinical applications of microbubbles are performed in aqueous 
environment, thus surface tension between the shell coating and water is a parameter that 
requires investigation. The static response of coated microbubbles is mainly investigated in the 
context of classic shell mechanics [24, 25], where the surface tension is not accounted for. On 
the other hand, experiments that measure the surface tension of such coatings are very limited. 
A recent study by Segers et al. [83] demonstrates the synthesis and development of 
phospholipid monolayers, where they report that the surface tension of such coatings is very 
small or even near zero, 3~ 10BW N mγ − . For the purposes of the present thesis, two cases are 
investigated with the same parameters as in 4.2.1, but for non-zero surface tension, i.e. 

34 10BW N mγ −= ⋅  and 24 10BW N mγ −= ⋅ : 
In Figure 4-32(a) the f-d curves that correspond to the cases with surface tension are 

demostrated against the pure elastic shell 0BW N mγ = . Surface tension significantly 
increases s the required force for the same deformation or, alternatively, surface tension adds 
an extra resistance on the shell. Moreover, the surface tension is an isotropic property that acts 
on the shell along with the in plane stresses τss and τφφ, which depend on the direction. Thus, 
surface tension could be interpreted as the isotropic part of the stress tensor. This argument 
implies that surface energy consists of an isotropic part, namely surface tension, and the 
purely elastic part that depends on the extent of local deformation. Equation (2-67) implies 
that when the shell/liquid interface has surface tension, the initial gas pressure is higer than the 
ambient by a term of 2 BWγ , which makes the gas compression a more significant term on the 
equilibrium; see also Figure 4-32(b) where the internal gas pressure (Pint=PG) is plotted 
against the ratio of the current volume V with the initial volume Vi. 
As in the purely elastic case shown in Figure 4-13 buckling is not observed in these two cases 
either, Figure 4-33(a) and (b), due to the stabilizing effect of surface tension. The disjoining 
pressure reaches higher values as the surface tension increases, but its distribution remains the 
same, i.e. repulsive in the contact regime, attractive in the transition regime and zero in the 
outer part of the shell, Figure 4-33(c) and (d). The increase in the disjoining pressure values 
indicates that the liquid film has been further compressed in the contact area. Identifying the 
contact regime as the part of the shell with the constant repulsive disjoining pressure, the 
transition regime with the repulsive and attractive disjoining pressure and the outer regime 
with the zero disjoining pressure, the length of the transition can be estimated based on the 
load distribution shown in Figure 4-33 (c) and (d). As can be gleaned, surface tension tends to 
decrease the contact length, increase the transition and the outer lengths. In addition, as 
surface tension increases the force required to sustain a certain deformation increases and as a 
result an almost flat and repulsive disjoining pressure distribution develops in the contact 
region. This is in contrast to the almost point load distribution obtained in the purely elastic 
case leading to a linear force deformation curve, at least in the initial part of the f-d curve 
before the resistance to volume compression dominates shell rigidity. It is due to the dominant 
resistance to volume compression that is exhibited by the shell when surface tension increases, 
as is the case in Figure 4-33 b and d, that the force deformation curve assumes an almost 
quadratic form that in its entirety. This is a pattern that distinguishes shells with significant 
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surface tension from purely elastic shells and will play a central role in the parameter 
estimation of lipid shells. 

 

Figure 4-32: (a) Force-deformation curve and (b) Internal gas pressure as function of the volume ratio. 

 

Figure 4-33: (a) and (b) Microbubble in deformed configuration for selected values of deformation, 
(c) and (d) Distribution of the disjoining pressure along the distance from the axis of symmetry. (a) 
and (c) γBW=4·10-3 N/m and (b) and (d) γBW=4·10-2N/m, respectively.  

(a) (b) 

(a) (b) 

(c) (d) 
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Effect of gas compressibility (PG-γ) 

In paragraph 4.2.1 the encapsulated gas is assumed to undergo isothermal pressure 
variations, therefore the internal-gas pressure increases as the shell volume decreases. Even 
though it is not realistic to assume that the gas is incompressible, here the purely elastic case is 
investigated again, but for zero polytropic index, γ=0, i.e. the internal pressure remains 
constant as the volume changes. In Figure 4-34(a) an f-d curve obtained for an incompressible 
gas is compared with the case of a compressible one. The two curves respond the same way up 
to deformation of 200 nm and then the response curve of the incompressible gas continues 
almost linearly with the deformation, Figure 4-34(a), indicating that when the gas 
compressibility is comparable to its elasticity 3A oP R χ = , the former acts as an extra stiffness 
and the required force is higher. A similar result was found in [84], where microbubbles were 
investigated subject to a static point load. In Figure 4-34(b) the internal gas pressure (Pint=PG) 
is plotted against the ratio between the current volume V and the initial volume Vi. As can be 
seen the gas pressure for the compressible case starts to increase as the shell is compressed, 

1iV V < , while for the incompressible case the internal pressure remains constant,  

 

Figure 4-34: (a) Force-deformation curve of a pure elastic shell with compressible and incompressible 
gas, (b) Internal gas pressure as function of the volume ratio, (c) Pure elastic microbubble with 
incompressible gas in deformed configuration for selected values of deformation and (d) Components 
of the total energy as function of deformation. The dimensionalization of axes is based on paragraph 
2.3.2 

(a) (b) 

(c) (d) 
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int 101325AP P Pa= = . Moreover, in the latter case the reduction of the volume is much larger 
in comparison with the case where gas compressibility is accounted for, for the same 
deformation, while the corresponding shapes are again flat and don’t exhibit buckling, Figure 
4-34(c). The energy due to gas compression vanishes when γ is set to zero, whereas the 
energies due to bending and the adhesive potential are almost the same with the compressible 
case. On the contrary the energy due to stretching is less, ~12, Figure 4-34(d), while for the 
compressible case is ~17.5, Figure 4-15(b). This is a result of the non-linearity of the 
Mooney-Rivlin law, where the extension of the area leads to the reduction of the stretching 
energy. Finally, the distribution of tensions and moments is presented in Figure 4-35. The in 
plane stresses τss and τφφ have been increased significantly in comparison with the 
compressible case, as the diagram in Figure 4-35(a) shows. This can be explained by the 
normal force balance, where the contribution of the gas pressure is eliminated, hence it is the 
stretching terms that balance the same external load (disjoining pressure). The bending 
moments and the shear tension reach approximately the same values as in the purely elastic 
shell. In addition, when the gas is treated as incompressible the disjoining pressure in the 
contact regime for large deformations is zero or even positive, indicating that the intermediate 
liquid film is not compressed as in case of the compressible gas. Most of the disjoining 
pressure is located with a maximum value at the end of the contact regime, which is the same 
concept as in the classic contact problem, where the applied load is a point at the end of 
contact and the response is strongly linear before buckling Figure 4-35(f). 
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Figure 4-35: Distribution of the (a) in plane stress τss, (b) in plane stress τφφ, (c) bending moment mss, 
(d) bending moment mφφ, (e) shear stress q and (f) disjoining pressure along the distance from the axis 
of symmetry (σ) for selected values of deformation. The dimensionalization of the axes is based on 
paragraph 2.3.2. 

  

(a) (b) 

(c) (d) 

(e) (f) 
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4.2.3 Study of a free microbubble 

In this paragraph numerical results obtained with the formulation of the last part of the 
session 2.3.2 are presented. More specifically, it is assumed that the shell has no elastic 
rigidity and its static behavior is controlled only by surface tension and gas compressibility as 
it interacts with the cantilever. The present case will be referred to in the following as the 
«free» microbubble. Following the same concept as in paragraph 4.2.1, the cantilever is placed 
at a dimensionless distance z=1.5 from the equator of the shell. Upon performing simulations 
with the parameters of Table 4-3, a force-distance curve is obtained using simple continuation 
in the distance z, Figure 4-36(a). The following dimensionless numbers characterize the shell:

ˆ 38;A o
A

BW

P RP
γ

= = ˆ 1BW
BW

BW

γγ
γ

= =  and 2ˆ 2.5 10o
o

BW

WW
γ

−= = ⋅ . 

The response of a free microbubble in terms of a f-d curve is similar with that of a 
coated microbubble, Figure 4-36(b). Both curves exhibit the same maximum attractive force, 
because the same adhesive energy per unit area was assumed (Wo=10-4 N/m). On the other 
hand, the response is more linear and with higher slope in the case of a coated microbubble. In 
addition, the deformation when the shell is under the maximum attraction is -107 nm in case 
of the free microbubble, while in the purely elastic case is -60 nm. This difference originates 

from the different value of z for which the total force becomes zero, ( )0 0.99z F = =  for the 

free microbubble. Moreover, the disjoining pressure, Figure 4-36(c), is positive (repulsion) 
around the contact area, negative in the transition regime and zero in the outer area, as in the 
purely elastic case. It must be noted, that in the present case the distribution of the disjoining 
pressure is almost uniform in the contact region, which indicates that the film height is almost 
constant as well around the contact area. Moreover, the shape that corresponds to this solution 
is again flat in the contact area, with no wrinkles, and buckling was not observed as it was 
expected, Figure 4-36(d). This is also confirmed by the distribution of the mean and principal 
curvatures, Figure 4-37, where it can be seen that along the contact regime the curvatures are 
constant and zero. As the deformation increases the principal curvatures, ks and kφ, reach 
values higher and less than one in the outer regime ( 0.6s > ), respectively, which indicates 
that the shell in s direction is compressed and in φ is elongated thus confirming that the shell is 
not spherical in the outer regime. The total energy increases in comparison with the total 
energy of a pure elastic shell Figure 4-38(a), because the contribution of surface energy is 
relatively large. Decomposing the total energy in its components it is clear that most of the 
energy is due to surface tension. Moreover, the maximum value of the energy due to gas 
compression in the present case is ˆ 0.2cw ≈ , while in the pure elastic shell it is ˆ 2.5cw ≈ ,  

Initial radius: 1.5oR mm=     

Surface tension: 34 10BW N mγ −= ⋅  Polytropic 
index: 1.07γ =   

Potential depth 410oW N m−=  Potential length 50A nmδ =  400 elements  
Table 4-3: Simulation parameters for the f-d curve of a free microbubble. 
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because in the former case the corresponding final volume is 0.98f iV V=  of the initial and in 

the latter it is 0.96f iV V= . On the other hand, the dimensionless energy of the adhesive 

potential is ˆ 2.5IFw ≈  for both cases, which means that the liquid film between the shell and 
the cantilever is compressed by the same amount. In addition, the energies due to stretching 
and bending are zero, because it is assumed that the shell has no elasticity rigidity, thus it 
cannot store elastic energy. Finally, the energy due to surface tension is the integral of the 
surface tension over the deformed area and tends to increase with the deformation, bold solid 
line in Figure 4-38(b). Given the assumption of a constant surface tension across the shell, it 
is convenient to conclude that the surface tension energy increases owing to the area 

 

Figure 4-36: (a) Force-distance curve of a free microbubble (solid line) and a microbubble covered 
with an elastic shell (dashed line, see also paragraph 4.2.1), (b) Force-deformation curve, (c) 
Distribution of the disjoining pressure along the distance from the axis of symmetry for the free 
microbubble and (d) Free microbubble in deformed configuration for selected values of deformation, 
(the axes z and σ are dimensionalized with the initial radius Ro) 

(a) (b) 

(c) (d) 
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Figure 4-37: Distribution of the principal curvatures along the distance from the axis of symmetry (σ) 
for the free microbubble (a) Mean curvature (km), (b) curvature on s direction (ks) and (c) curvature on 
φ direction (kφ). 

expansion. In contrast to the case of a drop where the increase in the inner pressure causes a 
reduction on the surface, in the present case an increase in the inner pressure can be followed 
by an increase of the surface, because the shell is not spherical, when it is deformed. 
Moreover, the importance of surface tension is also revealed on the fact that when the 
cantilever is at a long distance from the shell, i.e. the shell is not deformed, yet the energy due 
to surface tension is not zero, but it has a value of 250 confirming in this way a stabilizing 
role. In addition, the distribution of the total energy is depicted in Figure 4-38(c) for selected 
values of deformation, where the adhesive potential is seen to be almost constant-repulsive 
along the contact regime at the edge of which it with the transition region it reaches a 
minimum value of -1 ( or -Wo in dimensional form) before it drops to zero in the outer region. 
The minimum value is shifted to the right as deformation increases, which is in accordance 
with the evolution of the deformed shape and the length of the contact regime.  

(a) 

(b) (c) 
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Figure 4-38: Energy diagrams of a free microbubble, (a) Total energy as function of the deformation, 
(b) Components of the total energy as function of deformation (surface tension right y axis). (c) 
Distribution of potential function along the distance from the axis of symmetry for selected values of 
deformation. The dimensionalization of axes is based on paragraph 2.3.2. 

  

(a) (b) 

(c) 
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Effect of surface tension (γBW) 

One more case that is examined here, namely that of a free microbubble, but for higher 
surface tension, i.e. 24 10BW N mγ −= ⋅ . In Figure 4-39 the f-d curves for two free 
microbubbles are compared corresponding to different surface tension, where the case with 
higher surface tension has a significantly higher slope demonstrating the stabilizing role of 
surface tension. The shape of the deformed microbubble when 24 10BW N mγ −= ⋅  is depicted 
in Figure 4-40(a) and the distribution of the disjoining pressure in Figure 4-40(b), where in 
comparison with the 34 10BW N mγ −= ⋅  case the disjoining pressure is repulsive and one 
order of magnitude higher, which means that the film of liquid is considerably compressed 
since the same parameters of the adhesive potential (Wo, δA) are assumed. This argument is 
also supported by calculating the distribution of the adhesive potential along the shell, Figure 
4-40(c). The values of the potential are constant and positive in contact regime, which means 
that the height of the liquid film is constant and less than δA. In addition, the components of 
total energy, namely gas compression, adhesive potential and surface tension, are depicted in 
Figure 4-40(d). As before, the dominant contribution is by the surface tension (right y-axis), 
but the energy due to gas compression also reaches higher values revealing that the internal 
pressure is significantly larger following the initially larger internal pressure. Overall, when 
the microbubble is treated as a surface tension interface the contact region offers the dominant 
contribution to the force that is exerted to the shell by the cantilever, in contrast to the purely 
elastic case for which the force arises from an almost linear load distribution at the junction 
between the contact and transition regions. This also explains the difference in the response 
pattern of the f-d curves being linear and quadratic for the elastic and surface tension 
dominated cases, respectively. 

 

Figure 4-39: Comparison of f-d curves for different values of the surface tension γBW. 
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Figure 4-40: (a) Microbubble in deformed configuration for selected values of deformation, (the axes 
z and σ are dimensionalized with the initial radius Ro), (b) Distribution of the disjoining pressure along 
the distance from the axis of symmetry, (c) Distribution of the adhesive potential along the distance 
from the axis of symmetry, (d) Components of the total energy as function of deformation. The 
dimensionalization of axes is based on paragraph 2.3.2 

  

(a) 

(b) 

(c) 

(d) 



97 
 

Effect of the adhesive energy per unit area (Wo-δA) 

In the following, the effect of adhesive energy is investigated, when the microbubble is 
assumed to be free of elasticity. Thus, simulations are performed for higher values of 
characteristic energy Wo, i.e. 3 310  and 3 10oW N m− −= ⋅  all of them with 50A nmδ = . In 
Figure 4-41 the resulting force-distance curves are illustrated for different values of Wo, 
where the bold line corresponds to the reference case studied above. Increasing the adhesive 
energy, the maximum adhesion force increases as in the elastic shell. The deformed shapes 
and the distribution of the disjoining pressure are depicted in Figure 4-42 for each case. In 
contrast with the case of 410oW N m−= , for relatively large distances for which attractive 
forces prevail the shapes in Figure 4-42 (a) and (c) are significantly deformed around the pole 
and, as Wo increases, the shape has a shaper transition from the contact to outer regime. The 
disjoining pressure shown in Figure 4-42 (b) and (d) is positive in the contact regime for both 
cases indicating repulsion. It should also be noted that even though the graphs correspond to 
different values of Wo, the disjoining pressure reaches almost the same positive value (~5000 
Pa) in the contact region which means that the liquid film height (y) in the case of 

310oW N m−=  is lower than the case with the 33 10oW N m−= ⋅ . This argument can be 

verified by the leading term of the disjoining pressure when the film is small, which is 
4

5

4 oW
y
δΑ

. Thus, if Wo increases, the film height should also increase (not linearly) in order to obtain the 
same disjoining pressure. Moreover, the disjoining pressure in the transition regime for the 

33 10oW N m−= ⋅  case reaches a negative pick which is about three times the pick in 
310oW N m−=  case, indicating that the liquid film in this regime hasn’t change, but it is only 

the Wo parameter that changes the amplitude of pressure. It should be noted however, that the 
form of the f-d curve changes significantly as the interaction potential increases. In particular 
two limit points appear as the region of repulsive forces is approached via simple continuation. 
Consequently, implementation of arc length continuation is required in order to properly 
follow the f-d curve from the regime of attraction to that of repulsion. 

 

Figure 4-41: Comparison of force-distance curves for different values of Wo. 
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Figure 4-42: (a) Shape and (b) Distribution of the disjoining pressure for the case of Wo=10-3 N/m, (c) 
Shape and (d) Distribution of the disjoining pressure for the case of Wo=3·10-3 N/m. 

In addition, the chosen values of Wo are less than the surface tension, which is 
34 10BW N mγ −= ⋅  in all cases studied above. However, calculations with equal or even 

higher values than surface tension, i.e 34 10oW N m−≥ ⋅  fail to converge as it was expected, 

since for such shells the following equation 1 coso
W

BW

W θ
γ

+ =  holds [62, 63], where θW is the 

wetting angle and then for 34 10oW N m−≥ ⋅  an unrealistic cos Wθ  is calculated. 
As mentioned above, the adhesive energy per unit area depends also on the characteristic 

length δA. In the next, the effect of δA is investigated for the case of the free microbubble. 

(a) 

(b) 

(c) 

(d) 
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Thus, numerical calculations for 10, 50 and 100A nmδ =  with Wo=10-4 N/m are performed. 
Figure 4-43(a) illustrates the corresponding f-d curves for the above cases and Figure 4-43(b) 
focuses on the regime of the highest adhesive force. As in the pure elastic case, changing the 
parameter δA the f-d curves do not change significantly, but the response on the adhesive force 
regime becomes sharper as δA decreases. In addition, in Figure 4-44 the deformed shape and 
the distribution of the disjoining pressure are depicted for the two new cases investigated here. 
The disjoining pressure reaches higher values as δA decreases in the transition regime, see also 
Figure 4-44(c). 

 

Figure 4-43: (a) Comparison of f-d curves for different values of δΑ. (b) Focus on the maximum 
adhesion area in f-d curve. 

(a) (b) 
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Figure 4-44: Shape and distribution of disjoining pressure with (a), (b) δA=10 nm and (c), (d) δA=100 
nm. 

  

(a) 

(b) 

(c) 

(d) 
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Chapter 5. Numerical results: Bifurcation diagrams 
In this chapter simulations are performed employing the formulation of 
paragraph 2.4 in order to investigate the static response of coated 
microbubbles subject to a uniform-normal load. As the overpressure, ε, 
increases the relative volume 0/V V V=  decreases and the shape remains 
spherical, which is a stable solution, until the overpressure reaches the 
buckling threshold. At that point a bifurcation occurs that gives rise to the 
buckling solution, which is characterized by symmetric or asymmetric shapes 
with respect to the equator. Upon further increase of the external overpressure 
additional bifurcations occur. The sequence is a strong function of the 
parameters that determine the nature of the shell. An extensive parametric 
analysis is carried out in order to investigate the effect of different parameters 
on the bifurcation diagrams with emphasis placed on the dimensionless 

bending modulus ( )22 2
0 0

ˆ / ( ) 1/12 / (1 ) /b bk k R h Rχ ν = = −   that monitors the 

relative rigidity between the bending and stretching resistances of the shell, and 
dimensionless pressure 0

ˆ /A AP P R χ=  that controls the relative importance of 
gas compressibility on the rigidity of the shell. The response of microbubbles 
covered with polymeric shells is studied in the first part, while the case of the 
softer coatings, lipids, is tackled in the second part of the chapter. 
Microbubbles coated with shells of the former type are characterized by 
smaller values of the above dimensionless parameters, primarily so for the 
dimensionless pressure due to the increased stiffness of the shell. In both cases 
the bifurcation diagram exhibits a local stability pattern in the vicinity of the 
primary bifurcations and a global pattern pertaining to the minimum energy 
among the possible stable configurations. The latter is expected to determine 
the static configuration during a dynamic simulation when sufficiently strong 
disturbances exist. 
As the area dilatation modulus increases the nature of the primary bifurcation 
varies depending on the degree of strain that can be tolerated by the shell. For 
large b̂k  values the primary bifurcation evolves transcritically exhibiting oblate 
and prolate shapes with the latter inheriting the stability of the original 
spherosymmetric configuration. As the area dilatation increases the primary 
bifurcation is asymmetric and is linearly unstable. The shell exhibits a dimple 
in the region around the two poles where compressive strain is relaxed in favor 
of bending. As b̂k  further decreases symmetric shapes emerge as the primary 
bifurcation that again evolves transcritically. The supercritical part is linearly 
stable for a short range of external loads and is characterized by nearly prolate 
shapes. The subcritical part is also symmetric with shapes that exhibit one 
dimple at each pole in order to alleviate the extra energy generated due to the 
compressive stresses. This pattern holds for both types of shells. Furthermore, 
as the subcritical branches, symmetric or asymmetric, evolve towards smaller 
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external overpressures they form a limit point and turn towards larger 
overpressures and larger volume compressions. The latter shapes tend to 
generate contact in the region around the two poles. In fact, those stemming 
from the primary bifurcation become linearly stable with minimum energy 
among possible solutions for the same parameters and determine static 
configuration in a dynamic response pattern. The post buckling shapes of 
polymers are characterized by big Legendre modes (P10-P11), while those of 
lipids by small ones (P2-P3). Furthermore, in the case of polymeric shells the 
bifurcation diagram before the formation of the limit point is nearly flat 
reflecting the negligible resistance to volume compression. As the latter 
increases the slope of the branch becomes larger and negative. This behavior 
may explain the tendency of polymeric shells to exhibit shapes with contact 
when perturbed above or below the primary bifurcation point; as such shapes 
constitute the absolute energy minimum. On the contrary lipid shells tend to 
achieve  a static configuration with a certain amount of volume compression 
before full contact takes place and this reflects in their response during 
acoustic disturbances where compression only behavior is detected. 
Considering the polymeric shells as Skalak elastic membranes causes an 
exchange in the order of appearance of post-buckling solution families, with the 
primary bifurcation characterized by symmetric shapes. On the other hand, 
when lipid coatings are treated with Hook’s law the symmetric solution family 
that emerges at the primary bifurcation point evolves only subcritically 
exhibiting prolate shapes. Gas compression does not affect the response of 
polymer coatings for which, in contrast to the case with phospholipid shells, 
when the inner gas is treated as incompressible the limit point in the subcritical 
solution family disappears. Significantly compressed shapes appear in this case 
for marginally larger external overpressures. Finally, the parametric analysis 
for both types of coating shows that surface tension tends to increase the 
critical buckling load, while the order of appearance of the symmetric and 
asymmetric solution families remains unaffected.  
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5.1 Bifurcation diagrams of polymeric microbubbles 

5.1.1 Study of a single microbubble 

Based on the methodology developed in paragraph 2.4, an extensive numerical 
investigation was carried out of the static response of polymeric and phospholipid shells 
subject to external uniform load. These two types of shells are distinguished by the fact that 
the former are much stiffer in terms of both stretching and bending elasticities [13, 29, 30]. 
Furthermore, they are mostly characterized by Hooke’s law [13, 16], whereas phospholipid 
shells are strain softening for relatively large deformations [85, 86]. In the present study, the 
response of both types of shells subject to a uniform external overpressure is studied while 
using elastic properties that are available from the literature. In the former case, Bisphere is 
used as the contrast agent coated by a polymeric shell with dimensionless parameters that 
govern the microbubble’s mechanical response that are 4 5ˆ 10 10bk − −≈ −  and 3ˆ 10AP −≈ . On the 
other hand, microbubbles covered with phospholipid have smaller values for stretching and 
bending stiffness, as it already described in the previous chapter, with dimensionless numbers 

3ˆ 10bk −≈  and 0ˆ 10AP ≈ . Thus, their static response subject to a uniform pressure is 
investigated separately in the rest of the present chapter. Initially, the response of a 
microbubble covered with polymer is investigated with indicative elastic constants presented 
in Table 5-1 and correspond to a shell that was also investigated by Tsiglifis & Pelekasis [86] 
and Marmottant et al. [16]. As described in the previous chapter, the fundamental properties 
for polymeric coatings are the Young modulus and the shell thickness, where the bending 
resistance is an elastic parameter which depends on the shell rigidity and thickness, see eq. 
(2-22). Hence, 163.61 10bk Nm−= ⋅  and 6.1 N mχ = , or more appropriately Gs=88 MPa and 

h=23.1 nm, correspond to dimensionless parameters: ( )
2
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and 2ˆ 1.66 10A o
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χ

−= = ⋅ . In view of the negligible resistance to compression of polymeric 

shells, in comparison with the area dilatation modulus, parameter ˆ
AP  remains small 

throughout this section and the effect of bending to stretching resistance ratio, b̂k , is monitored 
by varying the shell thickness h for fixed shell radius R0 and Poisson ratio ν; see also Table 
5-1 below. 

Then a spherical and stress-free microbubble is considered with a uniform and known 

overpressure ΔP applied along the shell surface, P Pn∆ = −∆




, where n  is the normal vector, 
pointing outwards from the shell surface. Employing the formulation of paragraph 2.4 a 
solution is sought regarding the deformed shape and the internal pressure. Starting from a 
small value of ΔP the resulting shape is compressed, but remains spherical throughout its 
surface. A sequel of solutions can be obtained by performing simple continuation by treating 
ΔP as the operating parameter. Then, the solution can be represented in a relevant pressure-
volume diagram, Figure 5-1(a). As the overpressure increases, the volume is reduced and the  
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Shell thickness 23.1h nm=  Shear modulus 88sG MPa=   
Initial radius: 1.0oR mm=  Poisson ratio: 0.5v =   
Constitutive law: Hook  Pre-stress: 0u mm=   

Surface tension: 0BW N mγ =  Polytropic 
index: 1.07γ =  400 elements  

Table 5-1: Simulation parameters for the bifurcation diagram of a microbubble covered with polymer. 

shape is progressively compressed with a smaller radius, Figure 5-2 (a). Calculating the 
eigenvalues of the jacobian matrix by employing the dgeev Lapack routine, for the spherical 
solutions it is found that they are characterized by one negative eigenvalue, which is 
associated with the imposition of the bubble center of mass at the origin of the axes. It should 
be stressed that this unstable eigenvalue of the spherosymmetric configuration reflects the 
translational invariance of the system, it is always present in the eigenvalue spectrum of all the 
solution families, and does not determine the stability of the calculated static configurations. 

The critical external overpressure is almost identical with the prediction of linear theory, 
0.1878crP MPa∆ ≈  or 1.853Th

crε = , while the critical load calculated by FEM is 

1.878N
crε = . The dominant eigenmode is the 11th Legendre mode, P11, as can be verified by 

performing Fourier analysis [17, 38] of the numerically calculated dominant eigenvector at the 
bifurcation point, Figure 5-1(b). The emerging solution branch evolves subcritically, it is 
identified by two negative eigenvalues, and is characterized by shapes that exhibit a 
progressively more pronounced dimple, Figure 5-2(b). Further increase of the external 
overpressure reveals another bifurcating branch evolving from the main spherosymmetric 
solution family, that is characterized by a third unstable eigenvalue and whose eigenvector is 
characterized by an even Legendre mode, P10; corresponding shapes are depicted in Figure 5-2 
(b). This indicates the onset of a symmetric solution branch that emerges transcritically with 
three and two unstable eigenvalues below and beyond the bifurcation point, respectively, 
Figure 5-1(b). Both asymmetric and subcritical symmetric branches exhibit a limit point, 
where each of them loses a negative eigenvalue. The limit points are found in 

( )0.309, 0.968Vε = =  for the asymmetric solution and in ( )0.350, 0.941Vε = =  for the 

subcritical symmetric. Subsequently, after the limit point they have one and two negative 
eigenvalues, respectively, Figure 5-1(c). The supercritical symmetric branch keeps the two 
negative eigenvalues for 1.904ε ≤  and then a limit point appears that leads to a multibranch 
solution, see Figure 5-1(c), and its shape is characterized by multiple lobes, Figure 5-2(d). In 
addition, as the asymmetric solution is evolved the north pole of the shell approaches the 
origin of the z-axis and when the pole crosses the origin, the boundary condition 0θ =  is not 
anymore true. Rather, condition θ π=  should be used in both poles. Thus, the choice of a 
spherical coordinate system complicates the spline representation and the convergence is 
harder. Therefore for 1.14ε >  the Lagrangian markers are represented in a relevant cylindrical 
coordinate system (σ,z) with boundary conditions σ=0 in both poles, which can be handled 
more easily by the FEM and hence it is possible to reach an asymmetric configuration, where 
the two poles tend to coalesce, F shape in  Figure 5-2(b). In the symmetric solution, such a 
difficulty is not faced and thus the solution is always represented in the original spherical 
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coordinated system. Moreover, in both solutions the position of the mass center is always at 
the origin of the axes in order to avoid the rigid body motion. 

 

Figure 5-1: Bifurcation diagram for a microbubble with h=23.1 nm and Gs=88 MPa, (a) External 
overpressure as function of the volume, (b) Zoom in the bifurcation points and (c) Zoom in the area of 
limit points (circle, square and triangle). (χ=6.1 N/m, 163.61 10bk Nm−= ⋅  and 5ˆ 5.9 10bk −= ⋅ , 

2ˆ 1.66 10AP −= ⋅ ). 

(a) 

(b) 

(c) 
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Figure 5-2: Microbubble in deformed configuration: (a) Spherical, (b) Asymmetric, (c) Symmetric 
and (d1-4) Multi-lobed solutions. The axes are dimensionalized with the initial radius Ro. (h=23.1 nm, 
Gs=88 MPa, χ=6.1 N/m, 163.61 10bk Nm−= ⋅  and 5ˆ 5.9 10bk −= ⋅ , 2ˆ 1.66 10AP −= ⋅ ). 

Figure 5-3(a) illustrates the evolution of the total energy pertaining to each one of the 
solution branches verifying the above assertion. In particular, both asymmetric and symmetric 
solutions have higher energy than the spherical shape as they evolve subcritically from the 
bifurcation point. However, after forming a limit point the number of unstable eigenvalues is 
reduced by one. In particular, the asymmetric branch becomes linearly stable and has lower 

energy than the spherical solution after ( )0.341, 0.8977Vε = = , Figure 5-3(b) and similarly 

the symmetric after ( )0.389, 0.879Vε = = , Figure 5-3(c). The corresponding shapes in this 

(a) (b) (c) 

(d1) (d2) (d3) (d4) 
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part of the asymmetric solution branch exhibit progressively larger portions around the two 
poles where contact starts developing. The symmetric solution family that evolves 
supercritically eventually develops multiple lobes and its energy does not have a monotonic 
behavior as the pressure changes. It exhibits regions in the parameter space with either higher 
or lower total energy in comparison with the spherical solution, Figure 5-3 (d). In the regime 
with the multi-lobed shapes it is unstable with higher energy content. In the immediate 
supercritical regime it is linearly stable with shapes that are nearly prolate. Its energy content 
is lower than that of the spherosymmetric family but is higher than the one pertaining to the 
asymmetric solution family with contact, which constitutes an absolute minimum among the 
different solutions in this parameter range both above and below the critical bifurcation point. 
This pattern is corroborated by dynamic simulations of coated microbubbles [19] with the 
finite element methodology that leads to a static configuration that is characterized by such 
shapes both above and below the primary bifurcation point. 

 

Figure 5-3: (a) Bifurcation diagram in terms of total energy for a microbubble with h=23.1 nm and 
Gs=88 MPa, (b), (c) and (d) Zoom-in the bifurcation area of symmetric/asymmetric and the multi-
lobed branches, respectively. The multilobed branch exhibits significant variation in the immediate 
vicinity of the main spherical branch. In (b) and (c) the curves with energy higher than sphere evolve 
from their bifurcation point and curves with lower energy evolve towards pole coalescence. (χ=6.1 
N/m, 163.61 10bk Nm−= ⋅  and 5ˆ 5.9 10bk −= ⋅ , 2ˆ 1.66 10AP −= ⋅ ). 

 

 

(a) (b) 

(c) (d) 
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Figure 5-4 depicts the distribution of the in plane and shear tension, along with bending 
moments as function of the Lagragian variable ξ for the spherical solution branch, where it is 
reminded that ξ=0 and 1 correspond to the north and south poles of the shell, respectively. In 
the spherical shells, which have a progressively smaller radius than the initial stress-free shell, 
only in plane compressive stresses are developed, as the spherical shell has no curvature 
variations along its surface. On the other hand, the in plane τss tensions are tensile in the 
dimple of the asymmetric shapes, with a maximum compressive value at the end of the 
dimple, Figure 5-5(a). In the rest of the shell the τss are compressive. The value of the 
maximum compressive tension follows the position of the dimple, as can be seen by 
comparing with the deformed shape, Figure 5-2(b). In addition, the tensile tensions are almost 
of the same magnitude with the compressive. The in plane τφφ tensions are concentrated 
around the dimple area, while in the rest of the shell vanish, Figure 5-5(b). Similar is the 
behavior of the shear stress q, as it was expected, which follows the variations of the 
curvature, Figure 5-5(c). The bending moments are negative and constant in the inner part of 
the dimple, indicating mirror buckling (reversed sphere), positive around the dimple, where 
the curvature is higher than the one, as in Figure 4-14, and in the rest of the shell vanish, 
Figure 5-5(d) and (e). The tensions and moments for the symmetric solutions (P10) are the 
same as in the asymmetric ones, while their distribution is symmetric with respect to the 
equatorial plane, ξ=0.5, Figure 5-6. Similarly, the calculation of tensions and moments is 
symmetric with respect to ξ=0.5 for the solutions with multiple lobes, but with more picks due 
to the larger number of areas with high curvature and length variations, Figure 5-7. 
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Figure 5-4: Distribution of the in plane tensions (a) τss and (b) τφφ, (c) shear tension q and bending 
moments (d) mss and (e) mφφ as function of the Lagrangian variable ξ for the spherical branch. 

(a) (b) 

(c) 

(d) (e) 
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Figure 5-5: Distribution of the in plane tensions (a) τss and (b) τφφ, (c) shear tension q and bending 
moments (d) mss and (e) mφφ as function of the Lagrangian variable ξ for the asymmetric branch. 

(a) (b) 

(c) 

(d) (e) 
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Figure 5-6: Distribution of the in plane tensions (a) τss and (b) τφφ, (c) shear tension q and bending 
moments (d) mss and (e) mφφ as function of the Lagrangian variable ξ for the symmetric branch. 

(a) (b) 

(c) 

(d) (e) 
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Figure 5-7: Distribution of the in plane tensions (a) τss and (b) τφφ, (c) shear tension q and bending 
moments (d) mss and (e) mφφ as function of the Lagrangian variable ξ for the multiple lobes branch. 

 

 

  

(a) (b) 

(c) 

(d) (e) 
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5.1.2 Parametric study 

In the following session a parametric study is carried out in order to investigate the 
effect of different parameters that are involved in the shell equilibrium, namely stretching and 
bending rigidity, constitutive law, surface tension and gas compressibility. In addition, the 
case investigated in subsection 5.1.1 will be used as the reference case. 

Effect of elasticity moduli (stretching-χ & bending kb) 

Next, parametric analysis is performed in order to investigate the effect of the 
dimensionless bending modulus on the bifurcation diagram. Here the shell thickness is higher 
in comparison with the case investigated above, which probably is not a realistic value for 
polymeric coatings, which usually have thickness in the range of 10-50 nm [27, 29], however 
for the purpose of the present study, the simulation parameters are the same as in Table 5-1, 
but for h=115.5 nm. The corresponding dimensionless numbers are 3ˆ 1.48 10bk −= ⋅  and 

3ˆ 3 10AP −= ⋅ . It should be noted that changing the shell thickness both dimensionless 
parameters change, however, as mentioned above, the response is mainly controlled by the 
elasticity terms as long as ˆ 1AP  . Therefore, the stiffness due to gas compression does not 
affect the response and could be treated as the same with the case investigated in paragraph 
5.1.1. As can be gleaned from Figure 5-8(a) in this case the bifurcation diagram is modified in 
comparison with Figure 5-1(a) in the sense that the symmetric solution branch (P4) emerges 
transcritically as the primary instability of the basic spherical configuration, 

( )47, 0.8936Vε = =  with two negative eigenvalues for the branch that evolves towards 

overpressures that lie below the critical buckling threshold (dashed line) and one negative 
eigenvalue for the branch that evolves towards larger overpressures (dot line), Figure 5-8(b). 
The former branch soon exhibits a new bifurcation point ( )46, 0.8956Vε = =  leading to an 

asymmetric shape, Figure 5-8(c). As the same symmetric branch further evolves, in contrast 
with the case investigated in 5.1.1, it maintains three negative eigenvalues and does not exhibit 
any limit points. This effect is attributed to the lower value of the gas compression rigidity of 
the present case that facilitates volume reduction without significant additional external 
overpressure. A similar behavior was previously presented by Lytra & Pelekasis [87] on the 
bifurcation diagrams with simulation parameters for a bisphere microbubble 

( )5 3ˆ ˆ2.5 10 & 2 10b Ak P− −= ⋅ = ⋅ , where the primary instability is dominated by the P14 Legendre 

eigenmode. The primary bifurcation generates a symmetric solution family that evolves 
towards smaller overpressures and gives rise to a new bifurcation characterized by the P13 
mode. The symmetric branch that evolves towards higher external overpressures exhibits only 
one negative eigenvalue, the one corresponding to pure translation, thus inheriting the stability 
of the spherosymmetric branch. It exhibits shapes that are slightly prolate, before the onset of 
a bifurcation point that destabilizes it eventually leading to a limit point that generates a 
branch with three negative eigenvalues and shapes characterized by a protrusion around the 
equator. The branch generated by the secondary bifurcation mentioned above was not pursued 
further. 
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Figure 5-8: Bifurcation diagram for a microbubble with h=115.5 nm and Gs=88 MPa, (a) External 
overpressure as function of the volume,(b) and (c) Zoom in the bifurcation points area. (χ=31 N/m, 

144.52 10bk Nm−= ⋅  and 3ˆ 1.48 10bk −= ⋅ , 3ˆ 3 10AP −= ⋅ ). The edges of the shapes shown in panel (a) lie 
on the axis of symmetry z as depicted for one of them. 

Upon further increasing the overpressure ( )47.1, 0.8933Vε = =  a second bifurcation 

point is detected on the spherosymmetric branch which is dominated by the P5 mode, Figure 
5-8(b). It was not possible to follow this second bifurcation away from the main solution 

(a) 

(b) 

(c) 
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family to either higher or lower values with respect to the second critical load. However, 
disturbing the symmetric solution with the corresponding eigenvector at the bifurcation point 
detected at ( )46, 0.8956Vε = = , a branch is evolved subcritically that is characterized by two 

negative eigenvalues and an asymmetric shape that is dominated by the P5 Legendre 
eignemode (dashed-dot line). It should be noted that parametric continuation along the latter 
asymmetric branch breaks before the two poles sufficiently approach each other, perhaps due 
to the center of mass moving away from the actual shape. Simulations are underway in order 
to remedy this situation that is expected to furnish the remaining asymmetric branch until pole 
coalescence takes place. 

Finally, Figure 5-9(a) illustrates the total energy of the above solutions, where the 
sphere is the one with the lower energy than the subcritical symmetric and asymmetric 
solutions Figure 5-9(b), while the symmetric branch with the prolate-like shapes has lower 
energy than the sphere in the regime of one negative eigenvalue 43.5ε ≥ , while beyond this 
point the spherosymmetric configuration becomes energetically favored again, Figure 5-9(c). 

 

Figure 5-9: (a) Bifurcation diagram in terms of total energy for a microbubble with h=115.5 nm and 
Gs=88 MPa, (b) and (c) Zoom-in the bifurcation area of symmetric/asymmetric and the symmetric with 
protrusion branches, respectively. (χ=31 N/m, 144.52 10bk Nm−= ⋅  and 3ˆ 1.48 10bk −= ⋅ , 3ˆ 3 10AP −= ⋅ ). 

 

 

(a) 

(b) 

(c) 
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Next, a case with lower thickness than the previous is investigated with h=46.2 nm and 
the rest of the simulation parameters are the same as in Table 5-1. Therefore the area 
dilatation and bending modulus are χ=12.2 N/m, 152.89 10bk Nm−= ⋅ , respectively, while the 

dimensionless numbers 4ˆ 2.4 10bk −= ⋅  and 3ˆ 8 10AP −= ⋅ . The first bifurcation point is detected 

for ( )7.48, 0.9554Vε = =  with the corresponding eigenvector being dominated by the 7th 

Legendre eigenmode (dashed dot line) and the second bifurcation point for 

( )7.49, 0.9552Vε = =  with P8 as the dominant eigenmode (dashed line). As before, the 

symmetric branch evolves towards to higher and lower values of the second critical buckling 
load. The subcritical branch has three negative eigenvalues, while the supercritical branch is 
initially characterized by two eigenvalues, where after a limit point at ( )7.56, 0.9544Vε = = , 

a multibranch behavior (dotted line) is detected as above with three eigenvalues, see also the 
bifurcation diagrams in Figure 5-10(a)-(b). Both asymmetric and symmetric solutions that  

 

Figure 5-10: Bifurcation diagram for a microbubble with h=46.2 nm and Gs=88 MPa, (a) External 
overpressure as function of the volume and (b) Zoom in the bifurcation points area. (χ=12.2 N/m, 

152.89 10bk Nm−= ⋅  and 4ˆ 2.4 10bk −= ⋅ , 3ˆ 8 10AP −= ⋅ ). The edges of the shapes shown in panel (a) lie on 
the axis of symmetry z as depicted for one of them. 

(a) 

(b) 
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Figure 5-11: (a) Bifurcation diagram in terms of total energy for a microbubble with h=46.2 nm and 
Gs=88 MPa, (b), (c) and (d) Zoom-in the bifurcation area of asymmetric, symmetric and the multi-
lobed branches, respectively. The multilobed branch exhibits significant variation in the immediate 
vicinity of the main spherical branch. In (b) and (c) the curves with energy higher than sphere evolve 
from their bifurcation point and curves with lower energy evolve towards pole coalescence. (χ=12.2 
N/m, 152.89 10bk Nm−= ⋅  and 4ˆ 2.4 10bk −= ⋅ , 3ˆ 8 10AP −= ⋅ ). 

evolve subcritically become stable also in terms of their total energy, in comparison with the 
sphere, after ( )1.512, 0.716Vε = =  and ( )1.711, 0.661Vε = = , Figure 5-11(b), (c), 

respectively. On the other hand, the supercritical symmetric solution has initially lower 
energy, while after a limit point becomes unstable, Figure 5-11(d). 

In Figure 5-12(a) the bifurcation diagram of a microbubble with lower shell thickness in 
comparison with Table 5-1 is presented, i.e. h=10 nm ( )5 2ˆ ˆ1.1 10 & 3.9 10b Ak P− −= ⋅ = ⋅ .. In this 

case, the primary instability is dominated by the P17 Legendre eigenmode and it is followed by 
a second with P18 mode, Figure 5-12(b). The two solution branches evolve subcritically and 
after a limit point they evolve towards higher values of the overpressure, Figure 5-12(b). 
Decreasing further the shell thickness, h=5 ( )6 2ˆ ˆ2.7 10 & 8 10b Ak P− −= ⋅ = ⋅ nm the first 

bifurcation is captured for an even lower pressure, ε=0.0924, as a result of the significantly 
reduced bending resistance. It is dominated by the even P24 mode whereas the second 
bifurcation point by the odd P23 eigenmode. 

(a) (b) 

(c) (d) 
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Figure 5-12: Bifurcation diagram for a microbubble with h=10 nm and Gs=88 MPa, (a) External 
overpressure as function of the volume and (b) Zoom in the bifurcation points area. (χ=2.64 N/m, 

172.93 10bk Nm−= ⋅  and 5ˆ 1.1 10bk −= ⋅ , 2ˆ 3.9 10AP −= ⋅ ). 

As can be gleaned from the above parametric study, the bifurcation point is strongly 
depended on the dimensionless bending modulus. In particular, as the shell thickness increases 
for fixed radius, i.e. b̂k  increases indicating a thicker shell with relatively large bending 
resistance, buckling is translated towards higher values of the overpressure and it is in 
excellent agreement with the theoretical prediction, Figure 5-8 and Figure 5-10. The primary 
bifurcation is symmetric with the supercritical branch being almost prolate thus maintaining a 
certain amount of compression in the post buckling regime. As the shell thickness decreases, 
Figure 5-1, area dilatation consumes a significant amount of energy and thus rendering the 
asymmetric shape as the favored configuration in the post buckling regime, especially in its 
limiting state where contact is exhibited at the pole region. The indentation that forms at the 
pole region relaxes the shell from the compressive stresses in favor of the energetically 
favored bending stresses; see also Figure 5-4-Figure 5-7. Finally upon further reduction of 
the shell thickness, Figure 5-12, a single indentation is not enough to bring the energy down to 
an acceptable level for a static equilibrium to be achieved and a second indentation develops at 
the opposite pole thus bringing about the onset of symmetrically buckled shapes. It should be 
stressed however, that in most of the above cases the asymmetric shapes, whether they arise in 
the form of a primary or a secondary bifurcation, eventually gain stability through the process 
of pole coalescence and the emergence of shapes exhibiting contact. 

b̂k  1.48·10-3 2.40·10-4 5.90·10-5 1.11·10-5 2.70·10-6 

1st Bifurcation 
point, εcr 

47 7.48 1.878 0.3585 0.0924 

Eigenmode P4 P7 P11 P17 P24 

Table 5-2: Evolution of the numerically evaluated bifurcation point pertaining to the asymmetric and 
symmetric branches stemming from the spherical solution family, as the dimensionless bending 
resistance decreases.  

(a) (b) 
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Effect of surface tension and gas compression 

 
Figure 5-13: Bifurcation diagram for a microbubble with h=23.1 nm, Gs=88 MPa and γBW=0.051 N/m, 
(a) External overpressure as function of the volume, (b), (c) Zoom in the bifurcation and limit points 
(χ=6.1 N/m, 163.61 10bk Nm−= ⋅  and 5ˆ 5.9 10bk −= ⋅ , 2ˆ 1.66 10AP −= ⋅ ). 

Adding surface tension, γBW=0.051 N/m, on the shell equilibrium and assuming the rest 
of parameters to be the same as in Table 5-1 a bifurcation diagram is constructed, Figure 
5-13(a)-(c). Τhe response is the same with the case studied in paragraph 5.1.1, 0BWγ = , but 
the first instability is captured for a slightly higher value of the external overpressure 

( )2.9, 0.9656Vε = =  dominated again by the P11 Legendre eigenmode, while the second 

instability is found in ( )2.960, 0.9649Vε = =  characterized by the P10 mode. Increasing 

further the surface tension, γBW=0.07 N/m, the first bifurcation is found at 

( )3.35, 0.9606Vε = =  and the second in ( )3.38, 0.9603Vε = =  dominated again by the same 

modes as before. Clearly, in the above cases it is the internal pressure that increases as a result 
of interfacial tension, thus increasing parameter 0 0

ˆ 2 / / 0.1A BWP R Rγ χ=   and stabilizing the 
shell by increasing its resistance to volume compression, and shifts the bifurcation point to 
higher values in comparison with the theoretical critical buckling load. Finally, repeating both 
calculations while ignoring pressure changes in the microbubble does not result in any 
significant changes of the bifurcation diagram. In both cases the resistance to compression due 
to gas compressibility is negligible, ˆ 1AP  .  

(b) (c) 

(a) 
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Effect of constitutive law 

 

Figure 5-14: Bifurcation diagram for a microbubble with h=23.1 nm, Gs=88 MPa and Skalak’s 
constitutive law, (a) External overpressure as function of the volume, (b) and (c) Zoom in the 
bifurcation points (χ=6.1 N/m, 163.61 10bk Nm−= ⋅  and 5ˆ 5.9 10bk −= ⋅ , 2ˆ 1.66 10AP −= ⋅ ). 

In Figure 5-14 the shell coating is assuming to follow the Skalak’s law while the rest of 
the simulation parameters are the same as in Table 5-1. The bifurcation diagram is modified, 
with respect to the one presented in Figure 5-1, in the fashion shown in Figure 5-9, where the 
first instability is dominated by a symmetric mode. In the present case the first bifurcation 

( )1.6, 0.9441Vε = =  is also dominated by an even Legendre mode, the P10 eigenmode, and 

evolves trancritically. In the subcritical branch a third eigenvalue appears from which the 
asymmetric branch (P11) evolves with two unstable eigenvalues. The effective elasticity 
modulus of a Skalak shell is reduced when it is compressed, thus the effective dimensionless 
bending stiffness increases, which leads to a slightly higher buckling load and a transcritical 
symmetric primary bifurcation giving rise to prolate linearly stable in the immediate post-
buckling regime 

  

(a) 

(b) (c) 
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5.2 Bifurcation diagrams of lipid microbubbles 

5.2.1 Study of a single microbubble 

Next, the static response of microbubbles covered with a lipid monolayer are 
investigated assuming the parameters of Table 5-3: indicative dimensionless numbers are 

2ˆ 1.9 10bk −= ⋅  and ˆ 3AP =  corresponding to bending stiffness kb=3⋅10-14 N⋅m and area 
dilatation modulus χ=0.12 Ν/m. The above parameters are characteristic of lipid monolayer 
shells in that they reflect the increased importance of resistance to bending and volume 
compression contrary to polymeric shells for which ˆ ˆ, 1b Ak P << . As will be seen in the 
following, the importance of gas compressibility is a central effect of the softness of such 
shells since the bending to stretching resistance ratio is also small for polymeric shells. The 

bifurcation point is now detected at a lower normalized overpressure 1.65
A

P
P

ε
∆

= =  and 

relative volume 0.556
i

V V
V

= = , with the corresponding eigenvector dominated by the 

symmetric P2 Legendre eigenmode. It marks the onset of a transcritical bifurcation with oblate 
and prolate solution families evolving to lower and higher overpressures, respectively, 
stemming from the critical overpressure. Disturbing the spherical shape with the eigenvector 
obtained at the critical buckling load the subcritical solution branch is followed which contains 
oblate shapes, Figure 5-15(a) and Figure 5-16(b). This branch is unstable but exhibits a limit 

point that, employing arc-length continuation, turns towards larger overpressures P∆   after 
0.57V = , dashed line in Figure 5-15(a)-(b). The branch that evolves after the limit point is 

linearly stable with shapes that contain a progressively more intense dimple at each one of the 
two poles until eventually terminating with the two poles coalescing. More specifically, the 
shape described with the dotted line in Figure 5-16(b) corresponds to the last point of the 
oblate branch, where the simulation breaks, because as it is depicted in the shape, the relative 
position of the two poles is very close, indicating the point where the two opposite sides will 
form a contact line with further increase of the load, which the present formulation cannot 
predict. 

In this case solutions can also be obtained from the buckling point that evolve towards 
higher values of the external load also dominated again the P2 Legendre eigenmode, reflecting 
the transcritical nature of the bifurcation. There are two fundamental differences between the 
subcritical and supercritical branches. In the subcritical branch, the shape is compressed near  

Bending modulus: 143 10bk Nm−= ⋅  Area 
dilatation: 0.12 N mχ =   

Initial radius: 3.6oR mm=  Poisson ratio: 0.5v =   

Constitutive law: ( )Mooney-Rivlin b=0  Pre-stress: 0u mm=   

Surface tension: 0.051BW N mγ =  Polytropic 
index: 1.07γ =  400 elements  

Table 5-3: Simulation parameters for the bifurcation diagram of a microbubble covered with lipid. 
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Figure 5-15: Bifurcation diagram for a microbubble with χ=0.12 N/m, 143 10bk Nm−= ⋅  and Mooney-
Rivlin constitutive law. (a) External overpressure as function of the volume, (b) Zoom in the 
bifurcation and limit point and (c) Difference in radius between the north pole and equator as a 
function of the overpressure. ( 2ˆ ˆ1.9 10 , 3b Ak P−= ⋅ = ). 

the poles and expanded in the equator, oblate configuration, while the opposite happens with 
the shapes exhibited by the supercritical branch which are prolate. Thus, the bifurcation 
diagram could alternatively be described by the difference of the spherical radius in the pole 
and the equator (Δr), see Figure 5-15(c). Hence, in the spherical solution , in the 
oblate  and in the prolate 0r∆ > . Indicative deformed shapes of each solution branch 
are depicted in Figure 5-16(b), (c). It should be noted that despite the fact that an asymmetric 
bifurcation arises on the main spherosymmetric branch for a larger overpressure than the 
above reported critical load, it was not possible to follow the corresponding solution family to 
either larger or smaller overpressures and its calculation was not pursued further as the 
stability was dominated by the symmetric solution families. 

An important issue regarding the stability characteristics of the bifurcation diagram 
pertains to the local and global aspects of it. The subcritical branch (oblate) has two negative 
eigenvalues, while the spherical solution for the same overpressure, ε , has one. Nevertheless, 
after the limit point the oblate solution has also one negative eigenvalue thus becoming 
linearly stable as well. On the other hand, the supercritical solution has one negative  

0r∆ =
0r∆ <

(a) 

(b) (c) 
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Figure 5-16: Microbubble in deformed configuration: (a) Spherical, (b) Oblate and (c) Prolate 
solutions. The axes are dimensionalized with the initial radius Ro. ( 143 10bk Nm−= ⋅ , 0.12 N mχ = , 

and 2ˆ ˆ1.9 10 , 3b Ak P−= ⋅ = ). 

eigenvalue whereas and for the same values of ε , the spherical solution has two or even more 
negative eigenvalues. In other words the prolate solution inherits the stability of the spherical 
branch before the bifurcation point and is thus linearly stable. As was above pointed out, that 
is the eigenvalue that reflects translational invariance of the system and does not affect the 
stability of the system in any way. 

Figure 5-17(a) depicts the total energy of each branch, where it is clear that for every 
value of the external overpressure there is a global energy minimum despite the local linear 
stability characteristics of the system. Before the primary buckling instability the spherical 
configuration has the minimum energy among the different solution families, Figure 5-17(b). 
Beyond the critical load the prolate family is linearly stable and its energy is lower than that of 
the sphere, however, the oblate solution family that emerges after the limit point and turns to 
larger overpressures has an even lower energy content, Figure 5-17(c), and is expected to 
dynamically dominate static equilibrium. 

More specifically, as we proceed along the subcritical oblate solution family after the 
bifurcation point ( )1.65, 0.556Vε = = , until the limit point ( )1.56, 0.563Vε = =  and slightly 

beyond it, the spherical configuration has lower energy in comparison with the oblate solution, 
which is in accordance with the number of negative eigenvalues. Beyond a certain 
overpressure the energy curves of the oblate and spherical solution family cross and the oblate 
family is energetically favorable, Figure 5-17(c). This happens very near the primary 
bifurcation point. In fact, beyond the primary bifurcation point the prolate family is linearly 
stable to small disturbances as well. However, for large enough initial geometric deviations 

(a) (b) (c) 
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from the prolate shape the oblate static configuration will dominate since it is also linearly 
stable but, in addition, carries the minimum energy content among all the three solutions that 
were captured. In this context, Vlachomitrou & Pelekasis [19] performed dynamic simulations 
of the same microbubble in an unbounded flow and when static arrangement obtained above 
the primary bifurcation point, 2.0ε =  and 0.47V = , the shape is dominated by the oblate 
symmetric mode P2 indicating the global characteristics of the system at this parameter range. 
Below the primary bifurcation point simulations always settle back to the spherical shape, 
irrespective of the intensity of the initial disturbance, reflecting the linearly stable nature of the 
spherical configuration in this parameter range. 

 

Figure 5-17: (a) Bifurcation diagram in terms of total energy for a microbubble with 143 10bk Nm−= ⋅  
and 0.12 N mχ = , (b) and (c) Zoom-in the oblate branch. In (b) and (c) the curves with energy higher 
than sphere evolve from the bifurcation point and curves with lower energy evolve towards pole 
coalescence and (d) Zoom in higher values of overpressure ( 2ˆ ˆ1.9 10 , 3b Ak P−= ⋅ = ). 

 
  

(a) (b) 
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5.2.2 Parametric Study 

Effect of elasticity moduli (stretching-χ & bending kb) 

In this section a parametric study is conducted in order to capture the evolution of the 
bifurcation diagram pertaining to lipid monolayer shells, as the area dilatation modulus 

increases or, equivalently, as the dimensionless bending resistance b̂k  decreases. To this end, a 
microbubble with higher stretching modulus is investigated, subject to a uniform overpressure, 
with the same parameters as above, see Table 5-3, but with 0.24 N mχ = . Hence, the 

resulting dimensionless numbers are 2ˆ 0.96 10bk −= ⋅  and ˆ 1.5AP = , i.e. both bending and gas 
compression are less important in comparison with stretching. The first bifurcation point is 
detected when 1.35ε =  and 0.66V = , it is dominated by the asymmetric P3 Legendre 

eigenmode, followed by a second bifurcation point that arises for 1.43ε =  and 0.65V =  and  

 

Figure 5-18:  Bifurcation diagram for a microbubble with χ=0.24 N/m, 143 10bk Nm−= ⋅  and Mooney-
Rivlin constitutive law. (a) External overpressure as function of the volume, (b) Zoom in the 
bifurcation and limit point and (c) Difference in radius between the north pole and equator as a 
function of the overpressure. ( 2ˆ ˆ0.96 10 , 1.5b Ak P−= ⋅ = ). 

(a) 

(b) (c) 
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that is dominated by the P2 mode. In this case the symmetric solution arises in the form of a 
subcritical bifurcation and does not evolve towards higher values of the buckling pressure

 as in the previous case, see Figure 5-18 and Figure 5-19. In addition, the 

asymmetric and symmetric solutions have two and three negative eigenvalues, respectively, in 
contrast with the spherosymmetric solution that has only one and is linearly stable. As they 
evolve towards smaller external loads both branches develop limit points and turn towards 
larger overpressures while exhibiting significantly reduced volumes. The solution families that 
evolve past the limit points have one less negative eigenvalue than the branch which they 
stemmed from, i.e. the asymmetric has one and the symmetric two negative eigenvalues. 
Consequently, the asymmetric branch becomes linearly stable. As can be gleaned from Figure 
5-20(a) portraying the evolution of the total energy associated with each solution family, both 
branches are energetically favorable over the spherosymmetric solution in this range of 
external loads, Figure 5-20(b) and (c). Moreover, the curves of the two secondary branches 
cross each other at 1.26ε ≈ , but the asymmetric has always less energy than the symmetric in 
the range of parameters ε, see also Figure 5-20(d). In order to corroborate this pattern, it 
should be pointed out that dynamic response of the same microbubble was studied numerically 
by Vlachomitrou & Pelekasis [19] and it was seen that when static equilibrium is reached for 
the first time the shape is symmetric. However the latter shape is also destabilized and at the 
end of the simulation the asymmetric static configuration prevails, since it contains less energy 
than the symmetric one for the same overpressure ε . In addition, as in case examined in 
subsection 5.1.1, for the asymmetric solution a cylindrical coordinated system is considered  

 

Figure 5-19: Microbubble in deformed configuration: (a) Spherical, (b) Asymmetric and (c) Oblate 
solutions. The axes are dimensionlized with the initial radius Ro. (

143 10bk Nm−= ⋅ , 0.24 N mχ = , and 
2ˆ ˆ0.96 10 , 1.5b Ak P−= ⋅ = ). 

( )1.43ε >

(a) (b) (c) 
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Figure 5-20: (a) Bifurcation diagram in terms of total energy for a microbubble with 143 10bk Nm−= ⋅  

and 0.24 N mχ = , (b) and (c) Zoom-in the asymmetric and symmetric branch. In (b) and (c) the 
curves with energy higher than sphere evolve from the bifurcation point and curves with lower energy 
evolve towards pole coalescence and (d) Zoom in higher values of overpressure (

2ˆ ˆ0.96 10 , 1.5b Ak P−= ⋅ = ). 

after 1.66ε >  in order to accommodate shapes whose center of mass falls outside the volume 
of microbubble, and hence it was possible to follow the asymmetric solution family until the 
two poles almost coalesce, E shape in Figure 5-19(b). The symmetric solution family was also 
captured until pole coalescence takes place. Symmetric shapes are not energetically favored 
since they have a higher energy content than the asymmetric ones during pole coalescence as a 
result of the fact that the latter shapes exhibit contact over a larger portion of the interface, 
Figure 5-19(b) and (c). 

As a final test the area dilatation modulus was further increased, i.e. 0.96 N mχ = , 

whice amounts to setting dimensionless parameters 2ˆ 0.24 10bk −= ⋅  and ˆ 0.38AP = . The 
bifurcation diagram is obtained following the same concept as above and is depicted in Figure 

5-21(a). The first bifurcation point is detected for a larger critical load, 1.18ε =  and 0.82V = , 
it is dominated by the P4 eigenmode and evolves transcritically, Figure 5-21(b). The subcritical 
branch after a limit point has one unstable eigenvalue thus becoming linearly stable. It is 
characterized by the onset of an indentation around each pole region that grows deeper as the 
external overpressure further increases and the volume of the microbubble decreases. It is a 

(a) (b) 

(c) (d) 
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result of the large area dilatation modulus that generates large compressive stresses as the load 
increases. In the two dimpled regions the compressive stresses are relaxed in favor of bending 
that acts in such a way as to reduce the total energy of the shell. 

The supercritical branch has also initially one negative eigenvalue, thus inheriting the 
stability of the original spherical solution family in the form of slightly prolate shapes, but it 
exhibits a limit point that leads to a solution that is characterized by multilobed shapes. The 
number of the unstable eigenvalues increases and the solution family is destabilized. The 
diagram of the total energy is shown in Figure 5-25(a) for each one of the solution families in 
the bifurcation diagram. It verifies the linear stability of the spherical shape that is superseded 
by the oblate and prolate shapes beyond the primary bifurcation point. In this range of external 
loads oblate shapes dominate static response since they correspond to a global minimum of the 
total shell energy among the possible solution branches, Figure 5-22(b) and (c). 

Lipid shells also conform with the pattern exhibited by polymeric shells, namely that as 
the area dilatation modulus increases the primary instability evolves from a symmetric one 
characterized by oblate and prolate shapes to an asymmetric and back to a symmetric one with 
one or two dimpled regions around the poles as a means to alleviate the compressive stresses 
that develop with increasing external load, Table 5-4. Despite the local stability characteristics 
of the diagram around the primary bifurcation global stability is determined by the minimum 
energy content among the possible solution branches, with the spherical shape dominating the 
region below the bifurcation point and the symmetric or asymmetric shapes dominating above 
the bifurcation point. The latter shapes evolve from the primary bifurcation after the onset of a 
limit point that leads to shapes exhibiting one or two gradually more intense dimples at the 
two poles region until coalescence. 

A major difference with polymeric shells lies in the fact that that the latter shapes, both 
above and below the primary bifurcation, possess a global minimum in the energy, for 
asymmetric shapes that almost exhibit contact between the two poles. Especially for loads that 
lie below the primary bifurcation this is a result of the very small resistance to volume 

 

Figure 5-21: Bifurcation diagram for a microbubble with χ=0.96 N/m, 143 10bk Nm−= ⋅  and Mooney-
Rivlin constitutive law. (a) External overpressure as function of the volume, (b) Zoom in the 
bifurcation and limit points ( 2ˆ ˆ0.24 10 , 0.38b Ak P−= ⋅ = ). 

(a) (b) 
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compression, in comparison with stretching and bending resistance, that affords the 
onset of shapes with very small volumes for marginally larger external loads. 

 
Figure 5-22: (a) Bifurcation diagram in terms of total energy for a microbubble with 143 10bk Nm−= ⋅  

and 0.96 N mχ = , (b) and (c) Zoom-in the asymmetric and symmetric branch. In (b) and (c) the 
curves with energy higher than sphere evolve from the bifurcation point and curves with lower energy 
evolve towards pole coalescence ( 2ˆ ˆ0.24 10 , 0.38b Ak P−= ⋅ = ). 

 

 

 

b̂k  1.9·10-2 0.96·10-2 0.24·10-2 

1st Bifurcation 
point, εcr 

1.65 1.35 1.18 

Eigenmode P2 P3 P4 

Table 5-4: Evolution of the numerically evaluated bifurcation point pertaining to the asymmetric and 
symmetric branches stemming from the spherical solution family, as the dimensionless bending 
resistance decreases. 

  

(a) (b) 

(c) 
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Effect of surface tension 

Next, the effect of the surface tension is investigated on the bifurcation diagram. Thus 
the case studied in paragraph 5.2.1, see Table 5-3, is recalled with 0BW N mγ =  and the 
corresponding bifurcation diagram is presented in Figure 5-23(a). As can be gleaned from the 
latter graph, the bifurcation point is detected at a lower overpressure, 0.65ε =  in comparison 

with the case where the surface tension is included ( )1.66ε = , which is attributed to the 

stabilizing role of the surface tension, that increases the effective resistance to volume 
compression thus preventing buckling. More specifically, in the case with a finite surface 
tension the initial internal gas pressure is higher, thus stabilizing the shell against buckling, 
since in the case of a lipid shell gas compressibility is comparable with the rigidity due to 

elasticity ( )ˆ 3AP = ; see also next paragraph for the effect of gas compressibility. The 

bifurcating branch evolves towards lower and higher values of the critical buckling load, 
dominated again by the symmetric Legendre eigenmode P2 and characterized by oblate and 
prolate shapes, respectively. Moreover, the number of the unstable eigenvalues is the same for 
each branch as in the original case and the total energy is less, because the energy due to 
surface tension is zero, however, the relative order remains the same, see also Figure 5-23(b). 
Thus, it can be concluded that surface tension does not qualitatively affect the main attributes 
of the bifurcation diagram, but only affects the actual location of the bifurcation point. 

 

Figure 5-23: Bifurcation diagram for a microbubble with χ=0.12 N/m, 143 10bk Nm−= ⋅ , Mooney-

Rivlin constitutive law and 0BWγ = . (a) External overpressure as function of the volume, (b) Total 

energy diagram ( 2ˆ ˆ1.9 10 , 3b Ak P−= ⋅ = ). 

  

(a) (b) 
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Effect of gas compressibility 

As was already pointed out in the present thesis, microbubbles covered with lipids are 
characterized by a lower area dilatation modulus and thus the gas compressibility acts as an 
extra stiffness which in the f-d curve of the AFM problem defines a third regime curved 
upwards. Hence, it is of great importance to understand how gas compression affects the 
bifurcation diagram. Thus, the original case of this paragraph, see Table 5-3, is recalculated 
setting the polytropic index to zero, 0γ = , i.e. it is assumed that the internal gas pressure does 
not change as the volume decreases. The bifurcation diagram for this case is presented in 
Figure 5-24(a), where the bifurcation point is at 0.56ε =  and the secondary branch is 
dominated again the symmetric P2 eigenmode, corresponding to a transcritical bifurcation that 
consists of an oblate and a prolate solution family. However, the solution curve that 
corresponds to the oblate configuration is characterized by an almost zero slope after the limit 
point, while in the original case, where gas compression is considered as an additional 
stiffness, the solution after the limit point has negative slope in the bifurcation diagram, see 
also Figure 5-15(a). In addition, in the oblate branch a limit point is not detected and therefore 
the whole branch has two unstable eigenvalues. Hence, for 0.56ε ≤  the sphere is the stable 
solution and for 0.56ε >  the prolate configuration, see also the diagram of total energy for 
each solution branch in Figure 5-24(b)-(d). The behavior observed here is also similar with the 
secondary branch of microbubbles covered with a polymeric shell, where due to the large 
value of the Young modulus (or equivalently the area dilatation modulus) the stiffness of gas 
compression is negligible, which is depicted in the secondary branch of the bifurcation 
diagram with an extended area of almost zero slope, see also Figure 5-8 and Figure 5-10. The 
same behavior is found for a BR14 microbubble with similar dimensionless numbers 

( )3ˆ ˆ4 10 & 2.27b Ak P−= ⋅ =  by Lytra and Pelekasis [87], where the curves follow the same trend 

when the gas pressure is omitted. In such cases it is expected that once contact is established 
between the two poles the solution family will turn to higher overpressures required to achieve 
even a marginal volume reduction, see also [59]. The latter solution family will probably arise 
after a limit point is achieved that stabilizes the ensuing shapes with contact in the manner 
observed in the context of bifurcation diagrams illustrated in Figure 5-1, Figure 5-8, Figure 
5-10. Such shapes will prevail when the spherical shape is sufficiently disturbed below the 
primary bifurcation point. 
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Figure 5-24: Bifurcation diagram for a microbubble with χ=0.12 N/m, 143 10bk Nm−= ⋅ , Mooney-
Rivlin constitutive law and 0γ =  (incompressible gas). (a) External overpressure as function of the 
volume, (b) Total energy diagram, (c) and (d) Zoom in the energy of the oblate and prolate branches, 
respectively. ( 2ˆ ˆ1.9 10 , 3b Ak P−= ⋅ = ). 
  

(a) (b) 

(c) (d) 
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Effect of constitutive law 

Finally, the originally studied elastic shell is assumed to be governed by the linear 
constitutive law Hook and simulations are again performed in order to construct the resulting 
bifurcation diagram. The buckling point is detected when 2.1ε =  and 0.45V =  and the 
bifurcating branch is dominated by the symmetric P2 Legendre eignemode that leads to prolate 
shapes that are linearly unstable. The oblate solution family is not captured in this case. The 
branch of prolate shapes evolves only subcritically until a limit point occurs, beyond which the 
solution family turns towards higher values of the external load, Figure 5-25(a)-(b), and 
significantly lower volumes. The energy of the prolate branch is higher than the energy of the 
spherical solution in the subcritical part where the former has two negative eigenvalues and 
similarly after the limit point until very near the primary bifurcation point, 2.075ε ≈ . Beyond 
this point the prolate solution becomes energetically favorable, Figure 5-25(c)-(d), and is 
expected to dominate the static configuration in this parameter range. Clearly then the 
constitutive bears a significant effect for such shells and needs to be carefully accounted for 
when considering their dynamic response. 

 
Figure 5-25: Bifurcation diagram for a microbubble with χ=0.12 N/m, 143 10bk Nm−= ⋅ , and Hook’s 
constitutive law. (a) External overpressure as function of the volume, (b) Zoom in the bifurcation and 
limit point, (c) Total energy diagram and (d) Zoom in the energy near the limit point, the curve with 
energy higher than sphere evolves from the bifurcation point, while the curve with lower energy 
corresponds to progressively prolate shape. ( 2ˆ ˆ1.9 10 , 3b Ak P−= ⋅ = ).  

(a) (b) 

(c) (d) 
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Chapter 6. Asymptotic Analysis - Comparison against experiments 
In this chapter numerical simulations using the classic contact model and the 
methodology developed in the present Thesis are coupled with asymptotic 
analysis and available AFM measurements in order to characterize a wide 
range of coated microbubbles. The novel methodology proposed in the present 
study is based upon introducing intermolecular forces in the liquid medium that 
surrounds the microbubble as a means to mediate the force exerted by the 
cantilever. The hydrophilic nature of the shell and cantilever justify this 
approach as is verified by the analysis and the results of the simulations. The 
accuracy of the calculated response provided by the contact model that 
employs intermolecular forces suggests that introduction of the disjoining 
pressure constitutes a reliable novel approach of general validity that can 
describe the contact problem for a variety of materials. 
In particular, the analytical expressions developed by Reissner [32, 33] and 
Pogorelov [34] for the linear and non-linear regimes of a force-deformation 
curve are employed in available experimental-AFM data by Glynos et al. [29] 
for polymeric coatings. Combining the transition from the linear regime with 
flat shapes to the non-linear regime with buckled shapes both Young’s modulus 
and shell thickness are estimated independently [88-90]. The calculated values 
are in excellent agreement with the experimental values of the Young’s modulus 
and the shell thickness provided by the manufacturer [31]. Simulations are 
performed with the estimated values and the results are compared with the 
experimental curves employing both classic contact and intermolecular forces 
models. The simulations recover the transition to the buckling stage, while a 
third curved upwards regime in the experimental f-d is not recovered, possibly 
due to non-elastic phenomena. Furthermore, accounting for a variable level of 
prestress allows for recovering the reported multiplicity in experimentally 
obtained f-d curves for almost the same elastic and geometric parameters of the 
microbubble and the cantilever. 
The experimental f-d curves of phospholipid coatings (Definity) obtained with 
the AFM by Bucher Santos et al. [30] respond almost linearly suggesting that 
buckling is not taking place. Thus, the Reissner to Pogorelov transition cannot 
be employed for parameter estimation. However, at relatively high 
deformations a regime curved upwards is detected which, as suggested by 
simulations, is governed by gas compression. A novel methodology for 
estimating the area dilatation modulus and bending stiffness is proposed, by 
coupling the slope of the experimental curve in the bending stiffness dominated 
Reissner regime with the cubic dependence on deformation in the gas 
compressibility dominated regime (Shanahan, Lulevich). The above two 
regimes correspond to the transition and contact region offering the major 
contribution, respectively, to the force exerted by the cantilever on the shell.  
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6.1 Microbubble covered with polymer 

6.1.1 Asymptotic Analysis - Parameter Estimation 

As it is already mentioned the microbubbles covered with polymeric biomaterial are 
stiffer in comparison with the ones covered with a lipid monolayer in terms of elasticity 
modulus (E). Thus, the former are closer to conventional shells and therefore the related 
theory could be easily adapted. Initially, a point force, F, is assumed to be applied at the pole 
of the microbubble, in order to investigate its asymptotic behavior. Even though this 
assumption is not realistic when the AFM problem is considered, it is widely used for 
parameter estimation [24, 29, 88] due to its simplicity, especially for small values of 
deformation. 

Thus, the pole of the microbubble is displaced by Δ when a point force is applied [40]. 
As far as the normalized deformation Δ/Ro is small, the area around the pole is compressed 
forming an almost flat and circular region with radius α. Beyond this area, which has a small 
deformation, the rest of the shell is assumed to remain spherical, Figure 6-1(a). Therefore, the 
normal elastic tension will be proportional to deformation, ~ RoEht ∆ , and the corresponding 

total stretching and bending energy will be ( )22~s oE Eha R∆  and ( )23~bE Eh α∆ , 

respectively. Then, the ratio between stretching and bending is: 

4

2 2~s

b o

E
E h R

α  (6-1) 

and when bending and stretching are equally important ~s bE E  or ~ ohRα . In addition, the 

work done by the point force F is W F= ∆ . Therefore, varying the total energy with respect to 
Δ gives: 

2

~
o

EhF
R
∆  (6-2) 

The above asymptotic approach is presented in [40]] and was also obtained by Reissner 
is his pioneering work [32, 33] where he solves the above problem analytically employing the 
differential equations at equilibrium. Reissner proves that when a point force is acting on the 
pole, the force-deformation relation is linear and has the following form: 

( )
2
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kEhF F
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ν
= ∆ = ∆

−
 (6-3) 

which is in accordance with eq (6-2).  
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Figure 6-1: Schematic representation of a microbubble subject to a point force at the pole. (a) Pre-
buckling and (b) Post-buckling. Both configurations are exaggerated for visual reasons. 

It is well known that increasing the point force F, the area around the pole will form a 
crater which, for the purposes of the present study, is assumed to be a mirror image of its 
original spherical shape, Figure 6-1(b). Most of the elastic energy is concentrated at the end of 
the crater, which has radius α and thickness d. The crater radius is assumed to be smaller in 
comparison with the shell radius Ro, therefore the angle 1cθ  , then ~ sino c o cR Rα θ θ≈  and 

the crater depth is ( ) 2~ 2 cos ~o o c o cR R Rθ θ∆ − . If ζ denotes the vertical displacement of the 

points on the inside of the crater, then the energies per unit area due to stretching and bending 
are 2 2~s oE Eh Rζ  and 3 2 4~bE Eh dζ , respectively. Moreover, ~ ~c od ad Rζ θ  and then 

multiplying the energies with the dimple area ( )~ ad  gives, 3 3 4~s oE Eh d Rα  and 
3 3 2~b oE Eh dRα . Again, when the two elastic energies are equally important, then ~s bE E , 

which results  in ~ od hR . Substituting the value of dimple thickness (d) into energies and 

varying with respect to Δ provides the following relation originally derived by Pogorelov [34]: 

5/ 2
1/ 2

o

EhF
R

≈ ∆  (6-4) 

The last result shows that when force becomes large enough for crater formation to take 
place, then the force-deformation relation is a non-linear equation. Pogorelov [34] extended 
Reissner’s work by accounting for the possibility of the local mirror buckling and his 
analytical calculations gives a similar equation with (6-4): 

( )

0.5
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22 2
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E hF
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 − 

 (6-5) 

Moreover, in order to investigate the above problem, but taking also into account the 
fact that the microbubble during the AFM is compressed by a flat cantilever, rather than a 
point force, the above asymptotic analysis is extended. Pauchard et al. [91] investigate a 
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spherical shell compressed by a flat and rigid plate. In their work, two stages are determined, 
stage I and II that describe the pre-and post-buckling configurations, respectively. Following 
this, the force-deformation relation for the stage I is assumed to have the form 
Giannakopoulos et al. [90]: 

2F a β= ∆ + ∆  (6-6) 

and the coefficients α,β must be calculated. For very small values of deformation the above 
equation must satisfy the Reissner relation (6-3), or alternatively the dominant term is the 
linear and the coefficient α must be: 

( )
2

2

4

3 1 o

Eha
Rν

=
−

 (6-7) 

as Reissner predicts. Then, in order for parameter β to be dimensionally correct it must have 
the following form: 

( )ˆ~
o

Eh
R

β β ν  (6-8) 

where ( )β̂ ν  is a function of the poisson ratio to be determined. Comparing the proposed 

function with numerical results obtained by Vaziri [52] and Shorter et al. [92], the following 
form of the force deformation equation is proposed for the pre-buckling stage [90] or stage I: 

( )
2

2

2

4 0.06543
3 1 o

Eh EhF
R Rν

= ∆ + ∆
−

 (6-9) 

and for the post buckling stage or stage II: 

( )
5/ 2

1/ 2
3/ 42

3.807

1 o

EhF
Rν

= ∆
−

 (6-10) 

It is clear that the quadratic term in eq. (6-9) is negligible in comparison with the linear, 
thus the relation remains strongly linear. 

Alternatively, and in the context of the classic contact analysis by Updike & Kalnins 
[47], see also the presentation in sections 2.3.1 and 3.3.1, the transition from the Reissner to 
the Pogorelov regime occurs in the form of a bifurcation point that marks the onset of dimpled 
shapes as energetically favored shapes over the original shapes that are flat at the pole region. 
Once the Poisson ratio is fixed the dimensionless force and deformation at the buckling point 
(Δ/h, PExt/(χR0)) have a universal value that can be calculated numerically and can then be 
employed in order to provide estimates of the area dilatation modulus χ and the shell thickness 
h, based on experimental measurements of the above transition point. The latter, however, is a 
very sensitive measurement that is not always easy to obtain. 
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Figure 6-2: (a) Experimental force-deformation curve (blue line), along with fitting of Reissner (dark 
green) and Pogorelov (red) equations and (b) Experimental force-deformation curve (blue line), along 
with fitting of plane contact analysis (green). 

The above analysis is of great importance as far as experimental results by the AFM are 
concerned, because the combination of Reissner-Pogorelov analysis with the point force and 
the proposed extension with the plane contact, or measurements of the force and deformation 
pertaining to the above transition, can provide the elasticity modulus and the shell thickness 
independently. Figure 6-2 illustrates a typical f-d curve [29] obtained via AFM, where three 
distinctly different regimes can be observed. An initial nonlinear regime, denoted with 1, 
occurs for very small values of the applied force - on the order of 10 nN and less - where the 
Albumin outer layer (thickness: ~10 nm) and intermolecular/surface adhesion forces between 
the shell and the cantilever are conjectured to participate in the dominant force balance with 
elastic forces. As the external load increases a linear regime appears, denoted with 2, followed 
by a nonlinear regime, denoted by 3, that is curved downwards. The linear regime is the 
Reissner [32, 33] regime where stretching and bending forces coming from the stiff 
polylactide shell balance each other over a flattened contact area that characterizes the 
microbubble shape. This is the part of the f-d curve that is typically used in the literature in 
order to infer the shell elasticity modulus once the shell thickness and radius are known [24, 
29]. The third regime occurs as the external load further increases and it is known in the 
literature as Pogorelov [34] regime; it appears as the compressive load on the flattened part of 
the shell exceeds a certain value, in which case the shell bents forming a crater at the pole 
region while a dimple forms at some distance from the pole where most of the bending energy 
is stored. In the present thesis the possibility for using both Reissner and Pogorelov regimes is 
investigated in order to estimate the shell elastic modulus and thickness and the resulting 
parameters are compared against experimental values [88]. To this end, the asymptotic 
relations from Reissner’s and Pogorelov’s theory are fitted in the experimental curve; see 
Figure 6-2 (a), in order to obtain the slopes of the linear and nonlinear regimes, respectively: 

37.2 and 1.14 10F F −= = ⋅
∆ ∆

 (6-11) 

with R2=0.99 for both fitted functions. Then, solving for E, h: 

(a) (b) 
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6.1 and 31E GPa h nm= =  (6-12) 

Similar calculations are performed with the proposed analysis developed in [89, 90], 
where the coefficients of stage I are calculated based on fitting in experimental data, Figure 
6-2(b): 

6linear coefficient 6.3 and quadratic coefficient 4.9 10= = ⋅  (6-13) 

with R2=0.99. Substitution in eq. (6-9) gives E=4.6 GPa and h=33 nm. 
The above calculations of the elastic modulus (E) and the thickness (h) of the shell have 

been repeated for all the available experimental measurements by Glynos et al. [29] and the 
results are in Table 6-1. The experimental estimates of the shell elastic modulus have been 
obtained using two different tipless cantilevers, with stiffness kc=0.61 N/m and 1.14 N/m. 
Moreover, it should be stressed that they are based on Reissner’s theory, eq (6-3). while 
adopting a linear empirical equation [31], h=1.5·10-2Ro, for the shell thickness that is provided 
by the manufacturer. 

As it becomes evident from Table 6-1, the calculated values for the elastic modulus and 
shell thickness obtained by combining the Reissner and Pogorelov asymptotic relations or the 
proposed extension, are in good agreement with the experimental estimates without requiring 
prior knowledge of the shell thickness. These findings corroborate the assertion of the present 
Thesis that the force-deformation curve is a sufficient measurement for the estimation of both 
of the elastic properties for microbubbles covered with polymeric material. 

 

  Experimental Values 
[29] 

Asymptotic 
Estimation-Point Load 

Asymptotic 
Estimation-Plane 
contact-Stage I 

 Do [μm] E [GPa] h [nm] E [GPa] h [nm] E [GPa] h [nm] 

kc=0.61 
N/m        

 2.6 10-16 20 8.5 25 20 16 
 4.1 2.5-6 31 6.1 31 4.6 33 

kc=1.14 
N/m        

 3.1 6-10 23 3.4 35 10 19 
 4.0 2.5-6 30 4.7 30 4.7 28 
 4.9 1-3 37 4.5 31 4.9 28 
 5.5 1-3 41 1.7 47 2 40 

Table 6-1: Estimation of the Young's modulus (E) and shell thickness (h). Comparison between the 
experimental values and the asymptotic analysis. 
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6.1.2 Comparison between simulations and experimental-AFM data 

Based on the numerical analysis developed for the classic contact model and the model 
that incorporates intermolecular forces, a series of simulations was carried out in order to 
capture the experimental curves obtained with an AFM by Glynos et al. [29] for microbubbles 
covered with polymeric biomaterial. Three different experimental curves are investigated here. 
The elasticity properties, which are used in the simulations, are the one that are estimated in 
paragraph 6.1.1 and the initial radius is measured with the AFM [29]. As already mentioned 
above, the response of various size microbubbles during the AFM experiment is different, 
even though they are encapsulated by the same material. Hence, in order to capture the 
multiplicity of f-d curves, the microbubbles are assumed to be pre-stressed and the surface 
tension is taken as the mean of the gas shell and bubble-water interface [17, 86], Table 6-2. 

The dimensionless numbers are: 2 5ˆ 2.3 10−= = ⋅b b ok k Rχ , 3ˆ 1.43 10−= = ⋅A A oP P R χ  and 
4ˆ 3.6 10−= = ⋅BW BWγ γ χ . Thus, performing simulations with the classic contact model, a f-d 

curve is calculated and it is directly compared with the one from the AFM experiment [29], 
Figure 6-3 (a). It is found that the simulations recover the force - deformation curve with 
satisfactory agreement, compared to experimental results. The onset of buckling takes place at 
around the same value of deformation, which is d=60 nm, even though the bifurcation point in 
the experimental curve is not clearly defined, and corresponds to a contact angle of θc=10°. 
The numerical analysis presented here is an idealized description of the contact between the 
cantilever and the shell, and the bifurcation point causes a sharp change in f-d curve. On the 
contrary, the experimental approach leads to a smooth transition into buckling stage. Thus the 
bifurcation point cannot be easily defined from the f-d curve and additional optical 
measurements are required to identify more precisely the onset of buckling during the 
experiment. Furthermore, employing the intermolecular forces model, with the same 
simulation parameters as before and assuming Wo=10-3 N/m and δA=50 nm both experimental 
and buckling curves of the classic contact model are recovered, indicating that the 
intermolecular forces model developed here is a reliable and novel theoretical and numerical 
tool, which can be used to simulate the contact problem of the AFM cantilever for both types 
of contrast agent microbubbles. It should be stressed that the initial nonlinear regime in the f-d 
curve cannot be fully captured due to lack of accurate data pertaining to the interaction 
potential between the cantilever and polymeric shell. Furthermore, the flat curve after the 
bifurcation point is not recovered, because for the elastic parameters considered here strongly 
favor buckling at large deformations. Finally, the experimental measurements presented in 
[29] register a multitude in the microbubble response for otherwise the same microbubble and 
cantilever geometry and materials. The simulations carried out in the context of the present 
Thesis attribute this behavior to the different level of shell pre-stress that is generated during 
sample preparation as a result of gas escaping the shell. Indeed a wide range of force 
deformation curves is accurately reproduced considering a certain amount of pre-stress in the 
form of a negative radial displacement, u, at the initial spherical configuration. 

The shape of the microbubble in deformed configuration is illustrated in Figure 6-3 (b) 
and it can be seen that it corresponds to the linear part of the curve is flat around the contact 
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Shell thickness: 30h nm=  Young’s 
modulus: 4.7E GPa=   

Initial radius: 2.00oR mm=  Poisson ratio: 0.42v =   

Constitutive law: Hook  Pre-stress: 
31.25 10u mm−= − ⋅

 
 

Surface tension: γΒW=0.051 N/m Polytropic index: 1.07γ =  400 elements 
Table 6-2: Simulation parameters for a microbubble covered with polymer (Bisphere). 

 
Figure 6-3: (a) Force-deformation curve, comparison of numerical (classic contact and intermolecular 
forces models) and experimental results, (b) Microbubble in deformed configuration. 

area and buckling is taking place for larger values of deformation in the non-linear regime. 
Moreover, stability analysis on the static configuration produced by the fem curve as is 
presented in paragraphs 3.3.1 and 4.1 reveals exchange of stability between the pre- and post-
buckling stages. However, as it is described in benchmark calculations the linear part of the 
pre-buckling stage could continue further on after the buckling point. In the same fashion, this 
part of the solution is seen to be unstable. The total energy graph for the pre- and post-
buckling solutions recovers the fact that the total energy of the buckling branch is less in 
comparison with the linear solution after buckling, Figure 6-4 (a), thus it is preferable in the 
experiment. It must be noted that the total energy is the sum of the energies due to stretching, 
bending, gas compression and surface tension. The relative importance of the total energy 
components is depicted in Figure 6-4(b) for both pre- and post-buckling solutions. As can be 
gleaned from the last graph the energy components that vary the most as the external force 
increases  are the energies due to elasticity, namely stretching and bending. They are equally 
important since bending and stretching have to balance each other for this type of shells, an 
equilibrium that also provides the slope of the f-d curve and the estimate of the elastic 
properties. It should also be noted that the stretching energy at zero deformation has a non-
zero value, because the shell is treated as pre-stressed by imposing an initial negative radial 
displacement. The deformed area varies very little in both the pre and post buckling parts 
hence surface tension does not play a major role. Moreover, the energy due to the compression 
of the gas is negligible because the reduction of the shell volume is very small. 

Next, simulations are performed for another two available experimental f-d curves [29] 
with the same type of coating while employing both contact models, Figure 6-5.Ro=1.75 μm, 

(a) (b) 
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h=22 nm, E=4.22 GPa and initial radial displacement u=-0.0005 μm and and Ro=2.45 μm, 
h=31 nm, E=1.58 GPa and u=-0.0016 μm; the rest of the simulation parameters are the same 
as in Table 6-2. The experimental curve presented in Figure 6-5 (a) was obtained with a 
softer cantilever, thus it was possible to capture the initial linear and the following non-linear 
regimes, while in Figure 6-5 (b) a stiffer cantilever can measure over a wider range of 
deformations. As illustrated by the above graph the response of the two numerical models is 
almost identical and recover the Reissner and Pogorelov regimes, but overestimate the critical 
buckling load. In addition, in the experiments with the stiffer cantilever a third regime is 
detected curved upwards, which the present modelling is not able to capture, even though the 
encapsulated gas is treated as compressible and it could define a regime dominated by the gas 
compression, see also Figure 4-6(a). However, the regime where the gas compression is 
relatively important is recovered by the simulations for higher values of deformation in 
comparison with the experimental range. Loading and unloading experimental curves show 
hysteresis indicating possible irreversible (plastic) deformation [29], which might explain the 
discrepancy between experiments and simulations in the high deformation range. However, 
the linear and non-linear regimes are governed by elastic behavior, they are in agreement with 
the present numerical (elastic) model and additionally, the estimation of the Young’s modulus 
and the shell thickness is also in agreement with the experimental values and the shell 
thickness provided by the manufacturer. 

 
Figure 6-4: (a) Total energy as function of deformation for the two solutions after the buckling point, 
(b) Components of total energy for the pre- and post-buckling stages. The modulus of each energy is 
dimensionalized with the area dilatation, see session 2.3.1, and the values of surface tension energy are 
in the right y-axis. 

 
Figure 6-5: F-d curves, comparison between numerical and experimental results (a) Ro=1.75 μm and 
(b) Ro=2.45 μm.  

(a) (b) 

(a) (b) 



143 
 

6.2 Microbubble covered with phospholipid: Preliminary results 

6.2.1 Asymptotic Analysis - Parameter Estimation 

When lipid shells are interrogated with Atomic Force Microscopy [30] the force 
deformation curves that are obtained, besides a very narrow initial nonlinear regime where 
transition from attractive to repulsive intermolecular forces takes place between the shell and 
cantilever, they exhibit a quite distinct linear regime followed by a curved upwards nonlinear 
regime, Figure 6-6. This is in marked contrast with the response curves obtained from 
polymeric shells, Figure 6-2 and Figure 6-5, that exhibit a curved down response curve at 
large deformations that was attributed to the Pogorelov regime where shell buckling takes 
place leading to crater formation and the nonlinear behavior predicted by Eq. (6-5). 
Simulations of the static deformation of lipid shells that are compressed by a flat plate have 
been performed, using the methodology that invokes intermolecular forces between the shell 
and cantilever as a means to provide a smooth representation of the force exerted between the 
above two hydrophilic materials. The latter methodology was presented in section 2.3.2 and 
extensively used in section 4.2 in order to simulate the response of both polymeric and lipid 
shells. It was thus shown that this is indeed a methodology of general validity that provides 
reliable predictions of the static response of polymeric shells that provides a smooth transition 
from the flat linear to the nonlinear post-buckling regime, Figure 6-3 and Figure 6-5. An 
extensive parametric study was also presented in section 4.2 for a wide parameter range 
pertaining to both polymeric and lipid shells with accurate and reliable results. 

As part of this parametric study simulations were performed fixing the product between 
bending and stretching resistance kb⋅χ in an effort to reproduce the slope of the linear part of 
the experimental curve based on the Reissner formula eq.(6-3), Figure 6-6(b). Next, upon 
fixing parameter 0

ˆ /A AP P R χ=  by setting the area dilatation modulus χ a series of simulations 

are conducted by varying kb so that the product 08 /bk Rχ  conforms with the slope of the 

experimental F-Δ curve, see also Table 6-3. In this fashion a series of force deformation 
curves were obtained, Figure 6-11(a), varying both ˆ ˆand Pb Ak while maintaining a fixed value 

of the product χkb. Out of the f-d curves that were produced the one with ˆ 10AP =  reproduced 
the slope and range of the linear regime exhibited by the experimental curve, Figure 6-8, 
except for the initial nonlinear part of the curve. Due to lack of data regarding the interaction 
potential the value W0=10-4 N/m was chosen so that the f-d curve matches the maximum 
attractive force registered in the experiments, upon performing an initial parametric study on 
W0 and the characteristic distance δΑ. The optimal value for the interaction potential was thus 
selected, 6-7(b), and was shown that the value of δΑ does not significantly affect the f-d curve, 
Figure 6-11(c). Figure 6-9(c)-(f) illustrate the evolution of the shape, the disjoining pressure, 
the in plane stresses and transverse shear q of the symmetrically compressed microbubble as 
the external force increases. Figure 6-9(a), (b) provides the actual shape as well as a blow-up 
of the region that joins the flat contact area with the almost spherical far field region where the 
interaction potential has no effect on the microbubble, illustrating the onset of a transition 
region that smoothly evolves the curvature of the shell from the flat contact region to the outer 
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region with mean curvature km~O(1/R0) and negligible disjoining pressure. Furthermore it is 
clear that as the force increases so does the transverse shear q which develops within the latter 

 

Figure 6-6: Experimental force-deformation curves for microbubbles covered with lipid monolayer, 
obtained via AFM by Bucher Santos et al. [30]. 

 

Figure 6-7: Numerical force-deformation curves for microbubbles covered with lipid monolayer 
obtained via FEM. During simulations 08 /bk Rχ  is constant, while (a) ˆ ˆand Pb Ak  vary as explained 

in Table 6-3, Wo=10-4 N/m, δΑ=50 nm, (b) P̂ 10A = , δA=50 nm and Wo varies and (c) P̂ 10A = , Wo=10-4 
N/m and δΑ varies. 

(a) (b) 

(a) 

(c) 

(b) 
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Area dilatation modulus 
χ [N/m] 

Bending modulus 
kb [Nm] 

Dimensionless 
bending modulus 

b̂k  

Dimensionless 
pressure 

ˆ
AP  

0.010 152.336 10−⋅  11.0 10−⋅  15 
0.015 151.558 10−⋅  24.6 10−⋅  10 
0.020 151.168 10−⋅  22.6 10−⋅  7.6 
0.030 167.690 10−⋅  21.1 10−⋅  5.0 
0.050 164.673 10−⋅  34.2 10−⋅  3.0 

Table 6-3: Values for the area dilatation modulus and bending stiffness employed for simulation and 
comparison against experimental data. 

 

Figure 6-8: Comparison between numerical P̂ 10A = , Wo=10-4 N/m, δΑ=12.5 nm and experimental 
curve [30]. 

transition layer [63] and is responsible for the compressive in plane stresses that develop in the 
contact and transition regions, mainly, of the shell. Blount et al. [63] studied free adhesion of 
2-d vesicles on solid substrates via a long range attractive short range repulsive potential. 
Vesicles are liquid filled shells that are characterized by finite bending resistance, fixed 
volume and an infinite area dilatation modulus, i.e. fixed area. When the interaction potential 
is of equal importance as the bending resistance, 2

0 / (1),bW R k O=  and the interaction length is 

much smaller than the bubble radius, 0/ 1,A Rδ << they recover a similar structure of the freely 
adhered vesicle as the one depicted in Figure 6-9and examine variations of the shape as the 
strength of the interaction increases. Proceeding along the same lines we can identify a similar 
structure of the static configuration of coated microbubbles subject to unidirectional 
compression, Figure 6-10(b). Our case differs from the one examined in [63] in the following 
ways: (a) the nature of the shell is different since in the present study it is characterized by a 
finite area dilatation modulus χ, (b) the geometry is axisymmetric rather than two dimensional 
and (c) it is not a case of free adhesion because an external force F is exerted on the cantilever 
and transferred to the shell via the intervening ultrathin liquid film. In the methodology 
developed here, see also section 4, the  
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Figure 6-9: (a) Shape in deformed configuration, (b). Blow up between the contact and outer regions, 
Distribution of (b) disjoining pressure, (c) in plane τss tension, (d) shear tension qand (e) in plane 
tension τφφ for selected values of deformation. 
 

(a) (b
) (a

) 
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Figure 6-10: (a) Simple geometric explanation of deformation and contact angle, (b) Schematic 
representation of the contact, transition and outer regimes along the shell surface, (c) Microbubble 
compressed between two rigid plates. 

force is implicitly fixed by setting the distance z0 between the cantilever and the equatorial 
plane of the microbubble. 

In particular we identify a flat contact region whose length-scales in the σ and z 
direction are L~R0 and δA respectively; similarly the arc length s along the contact region 
scales like L as well. In this region the transverse shear q vanishes and the dominant force 
balance in the normal direction is formed by the disjoining pressure exerted by the film on the 
shell and the internal microbubble pressure that is adjusted in order to accommodate volume 
compression. In the tangential direction in plane stresses develop in response to area 
compression of the shell. 

( )

:

1:

G A

ss
s ss

Wn P P
n

t
s s ϕϕ
t s t t

s

∂ − ≈ ∂
 ∂ ∂ ≈ − −
 ∂ ∂





 (6-14a, b) 

The latter is mainly generated in the adjacent transition region where significant bending 
takes place and are enforced on the contact region via the matching condition at their 
interface. In the case of free adhesion the distance between the cantilever and the shell is δA in 
the contact region and the pressure in the microbubble is the same as that in the environment 

σc σtr σout 

y(σ) 

σ 

z Δ 

α Ro 

(a) (b) 
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PA. During free adhesion the force on the shell is attractive and is established in the transition 
region. However, as the shell is compressed by the cantilever a repulsive disjoining pressure is 
exerted on the shell that is compensated by the internal gas pressure. Consequently, the shell 
thickness δ between the shell and cantilever decreases to reflect this change in ∂W/∂n. 
Therefore if ˆ / Az z δ≡  then for not very large pressure changes, i.e. 

( ) 0/ 1,G A AP P P Wδ∆ = − <<  the dimensionless film thickness is but slightly decreased, 

0 0ˆ ˆ ˆ1 and / 8 1 / (8 ),C A C Az z P W z P Wε δ ε δ= ≈ − ∆ ≈ → ≈ −∆  (6-15) 

In the adjacent transition layer the dominant balance is formed between the disjoining 
pressure and the bending stresses that develop as a result of the change is curvature that takes 
place in this region. The length-scale in the z direction remains ~δΑ whereas that in the radial 
direction σ adjusts its length scale,  , in order to conform with the above balance, i.e. 

1/41/4 1/2
1/20

0 04 2
0 0 0 0

/ bA b
b A

A

W kkk R RW R W R
δ δδ

δ
Α

    → → → <<          
     



 (6-16) 

Upon introducing ( )ˆ /s s L= −   , with L the length scale of the contact length for which 

it holds that L~R0, we obtain as the dominant balance in the transition layer: 

( ) ( )2 3
ˆˆ 0

ˆ~

ˆ
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ˆ ˆ,
1/ /ˆ:

ˆ
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s s

ss b b A
s s
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∂ ∂ ≈ ′ ′ ∂ ∂ = = ∂ ≈ −
 ∂

∂ ∂∂ ∂
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∂ ∂ ∂ ∂







 (6-17) 

In other words the transverse shear q that is generated in the transition layer due to the 
development of the intermolecular forces results in the compressive in plane stresses that also 
compress the contact region. Finally, the total force exerted on the shell within the contact and 
transition zones is 

( ) 2 2C Tr G AF F F P P L q Lπ π′= + ≈ − +  (6-18) 

where, 
ˆ 1ˆ , m s

s

W W ds Wq ds d d q k k k
n n d n k φψ ψ ψ

ψ
∂ ∂ ∂

= = = → ∆ = +
∂ ∂ ∂∫ ∫ ∫   (6-19) 

In the above ks, kφ and km denote the curvature along the arc length of the generating 
curve of the shell, along the polar direction and the mean curvature of the shell, whereas Δψ 
signifies the turn of the normal at the edge of the contact region of the shell. 

It is the relative importance between the above two contributions that determines the 
behavior of the force deformation curve. It depends on the relative rigidity due to bending and 
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volume compression. The shape of the shell in this region is provided by solving the above 
two equations along with appropriate matching conditions with the contact and outer regions. 
In particular, a shooting problem is solved with the following conditions:  

2

ˆ ˆ 2

ˆ ˆˆˆ ˆ ˆ , 0, , 1, 0
ˆ ˆ ˆ

ˆ ˆ 0

C s sc
dz d ds z z m m
ds ds ds

s q

s s
→ −∞ → → → → →

→∞ →
 (6-20) 

where ˆ ˆ, ,s scm m  denote the bending moments at the where the contact and transition regions  
join. The last condition is a result of the difference in order of magnitude for the transverse 
shear between the transition and outer layers. In particular, based on eq. (6-17) 

1/2 3/4

2
0 0 0

ˆ bA kq q
R W R
δ   

=    
   

  in which case ˆ 0q → as it approaches the outer region where q=O(1). 

The actual value of the transverse shear in the limit as the outer region is approached will be 
provided by the solution of the outer problem. On the other hand the bending moment ms 

remains of the same order within the transition and outer layer, 
1/2

2
0 0

ˆ b
s s

km m
W R
 

=  
 

, provided 

2
0 0~bk W R  and consequently its value is calculated by solving the transition layer and used as 

a matching condition on the outer problem. This condition is used in the same fashion that the 
contact angle is used as a means to match the outer problem with the transition region for 
conventional drops and bubbles. Alternatively, and preferably, the curvature can be calculated 
within the transition region, ˆ

sk , it is also of the same order as the curvature of the shell in the 
adjacent outer region, ks, and used as a matching condition. 

In the outer problem lengths scale with the microbubble radius, the disjoining pressure is 
negligible and a very similar version of the classic contact problem is recovered [46-48]: 

( ) ( ) ( )

( )

0 0

1:

1: 0

,

G A s ss BW s

ss
s ss s

s s
G G

q
n P P k k n

s

t k q
s s

mm mq P V P V
s s s

ϕ ϕϕ

ϕϕ

φ γ γ

s
t t γ

s
t s t t

s
s s

s s

∂
− = + − + ∇ ⋅ ∂

∂ ∂ + − + = ∂ ∂
∂ ∂ ∂

= + − =
∂ ∂ ∂



 



 (6-21a,b,c) 

coupled with symmetry conditions at the equatorial plane, z=zc with zc denoting the distance 
between the cantilever and the microbubble’s center of mass , and matching conditions at the 
contact point with the cantilever: 

ˆ0 : 0, / 0, / 1, s ss z dz ds dr ds k k= = = = =  (6-22) 

The transverse shear q at the contact point is obtained as part of the solution of the above 
outer problem. The distance zc is a more appropriate geometrical property imposed on the 
outer problem than the angle of contact φc since the latter is not as easy to measure in an 
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experiment. In classic solutions of the contact problem [46-48] angle φc is used as a condition 
along with the bending moment mφ calculated within the flat contact region. In view of the 
above it can be seen that such solutions constitute an outer problem of the contact 
configuration that are valid in cases for which the interaction potential is negligible. As a 
result the bending moments are not modified within the transition layer, the latter is absorbed 
in the outer region, and the flat region is in direct contact with the outer one. 

Nevertheless, the solution of the outer problem as formulated here is also subject to the 
Reissner solution[32, 33], as is the case with the standard formulation presented in [46-48], 
provided a significant increase in the internal gas pressure does not take place. In such a 
situation, as can also be seen by the numerical solution provided by the simulations in Figure 
6-9, the disjoining pressure is negligible in the contact region and exhibits a peak within the 
transition region and so does the transverse shear q. Then, provided the size of the transition 
region is small and the shell remains relatively shallow, i.e. deformation Δ remains much 
smaller than zc (Figure 6-10(a)), the transverse shear q is exerted at the point of contact, the 
shell remains almost spherical and the Reissner solution is valid, thus corroborating the linear 
part of the f-d curve registered in AFM measurements, Figure 6-6, and recovered by the 
simulations, Figure 6-7. 

However, the experiments as well as the simulations also capture a nonlinear curved 
upwards response pattern in the f-d curve which does not conform with the Reissner solution 
or the curved down post buckling regime. As indicated by the simulations and illustrated by 
the distribution of the disjoining pressure shown in Figure 6-9, this regime is associated with 
the onset of considerable rise in the gas pressure in the microbubble and a concomitant 
reduction in the film thickness in order to accommodate the balance in the contact region. 
When gas compressibility is of central importance in the response of coated bubbles to 
external forcing, it is the balance between pressure drop across the interface and in plane 
stresses that determine the f-d curve [25, 50]. Following the analysis presented by Shanahan 
[50], with the difference that an initial pre-stress is not considered herein, in the analysis 
presented below; we obtain for a symmetrically compressed microbubble. In view of the 
symmetry of the configuration, we concentrate on one of the two parts of the shell which we 
assume to be shallow, Figure 6-10 (c), and consequently to remain almost spherical. In the 
absence of compression the shell is assumed to be spherical with pressure P0 equal with the 
external, PA, and volume V0=4πR0

3/3. 
Assuming that the contact length L≈R0sinθ, Figure 6-10(c), is larger than the size of the 

transition layer, L >>  , and that the shell is shallow, Δ<<z, we obtain the following estimate 
for the shell volume when it is inflated at the equator, R=R0+δR, due to the external force and 
at the same time it is flattened at the two poles. In the last two regions the shell volume is 
decreased by an amount equal to the volume of two spherical sectors of radius R and angle θ, 
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Next, treating the shell as neo-Hookean with negligible bending in the outer region and 
an almost spherical shape we obtain the following force balance: 
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Upon combining the last two equations we recover the following relation for λ and the 
pressure drop across the shell: 
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In this fashion the force exerted on the shell at the contact region reads as: 
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which is the same as the formula developed in [25], when the Poisson ratio is set to 0.5, and 
employed in [30], for estimating the elastic properties of phospholipid shells. Based on the 
above analysis it is proposed that Reissner’s linear formula, that holds when the force on the 
shell is balanced by bending stresses in the transition region, can be combined with the above 
formula (6-26), that holds when the force on the shell is balanced by pressure drop across the 
shell in the contact region, in order to provide reliable estimates of the shell area dilatation 
modulus and bending stiffness. 

In this context, an effort was made to recover the shell area dilatation and bending 
moduli based on the above asymptotic results, .i.e. employing a combination of Eq’s (6-3) and 
(6-26) in the way Eq. (6-3) was combined with Eq. (6-4) to obtain the respective properties of 
polymeric shells. In particular, for the case with ˆ 10AP =  the slopes of the linear and non-linear 
regimes of the numerical curve are calculated, Figure 6-11(a). Both fitting curves conform 
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with the applied formulas with great reliability, R2=0.99. Then employing eq. (6-27) the area 
dilatation is estimated. The resulting value is 21.49 10 N mχ −= ⋅ . Subsequently, the bending 
modulus is estimated by substituting in Reissner’s eq. (6-3) the area dilatation modulus and 
the linear slope. The resulting value is 151.269 10bk Nm−= ⋅ . Repeating the previous calculation 

for the ˆ 3AP =  numerical case, the resulting values of area dilatation and bending moduli are 
23 10 N mχ −= ⋅  and 165.99 10bk Nm−= ⋅ , respectively. As can be gleaned from Table 6-3 the 

above estimates are in satisfactory agreement with the values employed during simulation. 
In addition, it should pointed out that Bucher Santos et al. [30] proposed the Lulevich et 

al. [25] model for the estimation of Young modulus of such coatings, which as described here 
is a cubic function of deformation. In the same study the Reissner model is not adopted, 
because it predicts unrealistically small values of the Young modulus, for a value of the shell 
thicknes, h=5 nm, provided by the industry. At this point, it is necessary to clarify that bending 
modulus of lipid monolayers is an independent parameter and is not related with the thickness 
or the elasticity modulus, as is also the case with red blood shells [71] which are coated with a 
phospholipid bilayer. The appropriate parameters in order to describe the mechanics of lipid 
monolayers are the bending modulus and the area dilatation modulus, which should be treated 
independently. Thus, it can be seen that the Reissner model is also valid for the experimental 
curves pertaining to phospholipid shells, but must be written in terms of the above elastic 
properties. Then, upon assuming a typical value of the bending modulus 16~ 3 10bk Nm−⋅ while 
applying Reissner’s formula for the f-d slope that was obtained through AFM, the area 
dilatation modulus is ~ 0.08 N mχ  which is a reasonable value. In fact, in the study of Bucher 
Santos et al. the estimated value of the Young modulus turns out to be E~15 MPa or χ=0.075 
N/m, Figure 4 in [30]. In addition, the simulations of the present thesis verify that the linear 
response of the experimental curves is a typical Reissner regime, Figure 6-8. Performing 
further calculations combined with experimental measurements obtained until higher 
deformations are achieved, within the curved upwards regime of the f-d curve, will validate 
the above methodology for estimating the elastic proeprties of lipid shells by combining the 
bending dominated, i.e.Reissner, with the gas compressibility dominated regime. 

 
Figure 6-11: Fitting in linear and non-linear regimes of the numerical force-deformation 
curve for (a) ˆ 10AP =  and (b) ˆ 3AP = .  

  

(a
) 

(b) 
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Chapter 7. Concluding remarks and future directions 
The present thesis investigates the static response of microbubbles subject to static 

loads. Three major problems are studied: 

• The contact problem 
• The bifurcation diagrams 
• The estimation of the elastic properties 

In the first problem the microbubble is compressed by a rigid and flat surface in order to 
simulate the case of the atomic force microscope (AFM), while in the second problem the 
static buckling of a microbubble is studied, where the shell is subject to a uniform normal 
load. In both problems, the normal and tangential force balances are solved, coupled with the 
isothermal equation of the gas compression via FEM, assuming axisymmetry and employing 
the b-cubic splines as basis function. The numerical models are validated against similar 
analytical [46-48] and numerical [59] solutions with excellent agreement, while the results of 
the contact problem are also compared against available experimental AFM data [29, 30]. In 
addition, a methodology is proposed for the estimation of the shell properties by analyzing the 
different regimes in force-deformation (f-d) curves. Hence, the conclusions of the present 
thesis are demonstrated initially for the contact problem and the characterization of the shell 
and then for the bifurcations diagrams, while at the end of the chapter some ideas are 
discussed as means of future work. 

7.1.1 The contact problem and characterization of the coating 

In order to simulate a microbubble compressed by the cantilever of an AFM two 
numerical models are proposed. The first is a simple model, inspired by the analytical work of 
Updike & Kalnins [46], where the applied load is concentrated at the end of the contact 
between the cantilever and the shell, paragraphs 2.3.1 and 4.1. The last assumption was 
validated by the present thesis, where the calculation of the pressure distribution along the 
contact line shows that the loading is a point non-zero function at the end of contact. It is 
shown that as the shell is compressed the region near the cantilever (pole) is flat and the 
solution is characterized by one negative eigenvalue; it arises as a result of the translational 
invariance of the problem and is dominated by P1. After the buckling point, the shell buckles 
in the pole due to high compressive tensions, forming a dimple. The flat solution is still an 
option after the buckling point, but in comparison with the buckling solution it has higher 
energy and one more unstable eigenvalue. Thus, buckling is the energetically favorable state. 
It is not only the shape and the eigenvalues that distinguish the two solutions, but additionally 
their representation in f-d curves. The response of a flat f-d curve is linear, known as Reissner 
regime, while the buckling curve is non-linear curved downwards, known as Pogorelov 
regime. In other words, the f-d curve is a bifurcation diagram, with the force representing the 
integral quantity that changes for different values of deformation. In addition, non-
dimensionalization of the governing equations gives rise in two dimensionless numbers, ˆ ˆ,b Ak P
, which define the relative importance of bending and gas compression to the area dilatation 
modulus, respectively. The parametric analysis shows that an increase in the values of the 
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dimensionless bending modulus b̂k  shifts the bifurcation point to higher values of force and 

deformation, because the definition of b̂k  is equivalent to the ratio of shell thickness to radius, 

especially for polymeric coatings. Thus, as b̂k  increases the shell becomes thicker, therefore 
buckling is postponed. The second dimensionless number is a nominal measure of the gas 
compressibility. As mentioned in the previous chapters the reduction of the shell volume 
raises the gas pressure and ˆ

AP  defines how important the pressure increase is as an extra 
stiffness in the shell equilibrium. Shells with a relatively high area dilatation modulus are 
characterized by ˆ 1AP  . Therefore the effect of gas compression only manifests itself at high 
values of deformation in the buckling solution, where a third non-linear curved upwards 
regime is calculated. For these values of deformation the shell is significantly compressed and 
the pressure has increased sufficiently so that it contributes as an additional stiffness. 
Therefore the required force increases in comparison with a shell that has lower ˆ

AP  or when 

the gas is treated as incompressible. When ˆ 1AP >  and buckling takes place, gas 
compressibility participates in the equilibrium for lower values of deformation, thus 
modifying the «curved downwards» post-buckling response earlier. Assuming an initially pre-
stressed shell with residual compressive elastic tensions or accounting for the surface tension 
of the shell-liquid interface, the internal pressure decreases or increases, respectively, resulting 
in an equivalent change in the required force. 

The second contact formulation, paragraph 2.3.2 and 4.2, is a model that takes into 
account the thin liquid film between the cantilever and the shell, due to the hydrophilic nature 
of lipid monolayers. In this model, as the cantilever approaches the microbubble the liquid 
phase is thinning and the pressure locally increases in comparison with the liquid bulk. The 
increase of pressure is known as disjoining pressure and represents the mechanism which 
transfers the forces from the cantilever to microbubble. The interaction of the two bodies is 
modelled with a sort-ranged potential, characterized by its minimum value (Wo) and the height 
of the film (δΑ) that minimizes the potential. Employing the formulation proposed here it is 
possible to calculate the force and the resulting deformation (Δ), when the distance between 
the cantilever and the center of mass of the microbubble is known, as will be the case in AFM 
measurement. The force is attractive / repulsive when the liquid film is higher or lower than 
the characteristic length δA, respectively. In any case, the response of the f-d curves is initially 
linear (~Δ) with flat shapes while for relatively small dimensionless bending stiffness, 

4 5ˆ ~ 10 10bk − −− , the response becomes non-linear (~Δ0.5) and buckling takes place in the area 

around the pole. In addition, when the gas compressibility is important, ˆ 1AP  , a third regime 
is detected in the post buckling regime that is curved upwards (~Δ2.5-3). However, for not large 
area dilatation moduli, 3 2ˆ ~ 10 10bk − −− , buckling is bypassed to a gas compression dominated 
regime. In addition, Wo represents the degree of adhesion between the cantilever and the 
microbubble. Thus, the regime with 0 / ~ 1W χ  describes the strong adhesion state, while when 

0 / 1W χ   the adhesion is weak. Simulations show that when the adhesion is strong, buckling 
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is postponed or bypassed, because strong tensile stresses are developed as the shell is strongly 
adhered on the cantilever. 

Thus, both contact models can recover the transition from Reisssner to Pogorelov and 
then to pressure dominated regime or the transition from Reissner to pressure regime, when 
buckling is bypassed. However, the intermolecular forces model is more realistic, because it 
accounts for the existence of the liquid film and provides valuable information for the 
adhesion and the required pull-off force. In addition, calculation of the disjoining pressure 
profile along the shell surface confirms that most of the applied pressure is concentrated at the 
end of the contact regime, recovering the formulation proposed by the classic contact problem, 
where the applied load is a ring-line load at the end of the contact. Moreover, the shear tension 
in both problems follows the variations of the applied load. Thus, in the classic contact the 
shear tension has a discontinuity at the end of contact, while in the intermolecular forces 
model the shear tension is a smooth function over an area rather a point. The latter area is 
essentially a transition regime that connects the part of the shell that is in contact (contact 
regime) with the outer shell that in small deformations is almost spherical (outer regime). 
Updike and Kalnins [46-48] divide the shell into two areas, the contact and the outer, implying 
that the transition regime shrinks to a point. Estimation of the transition regime length based 
on the simulations performed in the context of the present thesis show that the transition 
regime increases as bending stiffness and the characteristic length increase or when the 
maximum value of the potential decreases. 

It should also be pointed out, that in order to follow both flat and buckling curves of the 
classic contact problem a specific contact angle must be selected as the continuation parameter 
or alternatively the number of contact elements, which is a constraint, because for an angle 
that is not an integer multiple of the contact angle it is not possible to seek for a solution. On 
the other hand, when the contact problem is investigated with the adhesive potential, the 
continuation parameter is the relative distance between the cantilever and the shell, where a 
reasonable small step in distance can provide of the means for a parametric continuation of the 
solution as the force increases.  

The experimental f-d curves obtained with an AFM for polymeric coatings by Glynos et 
al. [29] exhibit the above described transition from the linear-Reissner regime to non-linear 
Pogorelov regime. Thus, fitting the analytical expressions developed by Reissner [32, 33] and 
Pogorelov [34] is possible to calculate the slope of two regimes. Thus, both Young modulus 
and shell thickness can be calculated simultaneously [88, 89] from a single measurement and 
without prior knowledge of the thickness, which is usually provided by the manufacturer. In 
addition, the extension of the Reissner work by Giannakopoulos et al. [90] can also provide 
the above properties. In both ways, the calculated values are in excellent agreement with the 
experimental estimates. 

On the other hand, Bucher Santos et al. [30] perform AFM measurements for 
phospholipid coatings. The f-d curves are linear indicating that buckling is not taking place, 
while exhibiting a distinct tendency to curve upwards for large deformations. Employing 
simulations with the intermolecular forces model for relatively big values of the dimensionless 
bending modulus the response of the above experiments is recovered. In addition, the fem 
curve is initially linear and then is curved upwards. Thus, the Pogorelov regime is bypassed to 
a gas compression dominated regime. Combination of numerical results and asymptotic 
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analysis provides analytical expressions to estimate the elastic properties by applying on the 
numerical curves Reissner’s theory combined with an expression that was developed in the 
present study that extends Shanahan’s [50] and Lulevich’s et al. [25] theory to account for gas 
compressibility,  . In addition, the length of the transition regime is calculated via asymptotic 
analysis as a function of the elasticity and adhesive properties. 

Finally, the main conclusions are outlined below: 
• The intermolecular forces model is a novel tool that recovers the experimental 

f-d curve for microbubbles covered with either polymeric or phospholipid 
monolayer shells. 

• The elastic properties of microbubbles covered with thin polymeric shells can 
be estimated from AFM [29] measurements by the transition from the flat 
(Reissner) to the buckled (Pogorelov) branch. 

• Buckling for microbubbles covered with lipid monolayer [30] is not detected – 
The static response initially follows the linear Reissner solution where bending 
stiffness dominates and beyond a certain level of deformation resistance to 
compression dominates rigidity and a nearlycubic (Δ3) response pattern is 
recovered. 

• The elastic properties, namely area dilatation and bending modulus, of 
phospholipid shells can also be estimated from AFM measurements by the 
transition from the bending stiffness (Reissner) regime to a gas compressibility 
dominated regime. 

• The parametric analysis shows that the dimensionless bending modulus 
controls the buckling point, but in case of strong adhesion buckling is 
postponed to higher values of force and deformation or it is totally bypassed. 

• Based on the above analysis, it can be concluded that microbubbles covered 
with lipid monolayer behave like viscoelastic solids. 
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7.1.2 The uniform pressure problem and bifurcation diagrams 

The second problem that is studied in the context of the present thesis is the buckling of 
coated microbubbles subject to a uniform and normal static load. Bifurcation diagrams are 
constructed for both types of materials and their response is investigated separately for 
indicative parameters available from the literature [16, 19, 86]. 

In both polymers and phospholipids, when the dimensionless bending modulus, b̂k , is 
relatively small the first instability on the spherical branch is dominated by a symmetric mode. 
Decreasing b̂k , which essentially is equivalent to an increase on the area dilatation modulus, χ, 
the first instability is dominated by an asymmetric mode. In this case the shell forms one 
dimple in order to relax the compressive tensions, which now are higher, because χ is higher. 
Further decrease of b̂k  causes a new exchange with symmetric shapes dominating again in the 
first instability, because in order to achieve static equilibrium two dimples are required to 
relax the compressive tensions. This trend is detected in both materials via parametric study 
for b̂k . 

Furthermore, in both polymers and lipids, when the first bifurcation is dominated by an 
asymmetric mode, the secondary branch evolves subcritically and after a limit point evolves 
towards higher loads than the critical buckling load, where it tends to form a contact line in the 
region around the two poles. The second bifurcation is dominated by a symmetric mode which 
evolves transcritically. The subcritical branch evolves the same way as the asymmetric one 
and is characterized by oblate shapes. As the supercritical branch evolves it is characterized by 
prolate shapes. Both subcritical branches have more unstable eigenvalues in comparison with 
the sphere and higher energy, before exhibiting a limit point. However, after the limit point 
each of them loses one unstable eigenvalue in comparison with branch that emerges right after 
the bifurcation point. In fact the primary bifurcating branch, after the limit point, is linearly 
stable and additionally has lower energy as it evolves towards pole coalescence. The 
supercritical symmetric branch initially inherits the stability of the sphere and it is linear 
stable. In the case of polymeric shells, it exhibits a limit point very close to the bifurcation 
poin, which leads to a non-monotonic response, characterized by multilobed shapes. The same 
branch in lipids doesn’t exhibit the limit point, it keeps the stability as explained above and it 
is characterized by progressively more prolate shapes. 

In addition, for both materials, when the first instability on the spherical solution is 
symmetric, the second instability for a higher load is asymmetric and it was not possible to 
follow this branch to any direction. Only in the case of polymers, does the symmetric 
subcritical branch soon exhibit a new unstable eigenvalue. Disturbing the symmetric solution 
with the new eigenvector a new solution branch emerges with asymmetric shapes, which as 
the branch evolves tend to form a contact zone. This is conjectured to be the result of a mode 
coalescence event as the two bifurcation points coincide. In the parameter range beyond this 
coalescence the bifurcation diagram changes. The asymmetric branch evolves over a small 
interval of the external overpressure and is conjectured to terminate on the asymmetric branch 
in the form of an additional bifurcation point that appears on the symmetric branch and is also 
asymmetric in nature. In case of lipids the subcritical symmetric solution doesn’t have any 
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additional unstable eigenvalue before the limit point, which could lead to an asymmetric 
solution as in polymers. 

Furthermore, the above local satiability characteristics near the first bifurcation point are 
very important to understand the nature of the buckling, but there is a global stability behavior 
determined by minimum total energy. Below the bifurcation point and before the limit point, 
the energetically favorable configuration is a compressed sphere, but after the limit point the 
solutions with the lower energy are buckled which tend to coalesce. The above picture is 
corroborated when they are combined with numerical results from the dynamic buckling [19], 
where for loads higher than the buckling point buckled shapes characterize the solution, while 
below the bifurcation point spherical shapes are captured. 

Moreover, as was repeatedly mentioned, microbubbles covered with lipids have lower 
area dilatation modulus and as they are compressed the increase of the internal pressure is 
comparable with the elasticity, which in the contact problem introduced a third regime in f-d 
curve. Here, the significant contribution of gas compression to the shell equilibrium is 
depicted with a rapid change in the slope of the bifurcation diagram after the limit point. In 
polymers, where the internal gas doesn’t contribute in the equilibrium so much, the slope after 
the limit point changes very slowly. The last finding agrees well with parametric analysis for 
lipids, where as the area dilatation increases the importance of gas compression is less, hence 
the slope after the limit point is less. In addition, surface tension prevents buckling, 
whiletranslating the buckling point to higher values of load, but it doesn’t change the order of 
appearance of the modes. On the other hand, changing the constitutive law of the elastic 
tensions can change the mode of the first instability. Considering a different constitutive law, 
strain softening or strain hardening, the effective area dilatation modulus increases or 
decreases in compression, respectively. Thus, the effective dimensionless bending modulus 
increases or decreases and the order of appearance of the first mode changes accordingly as 
described for the dimensionless bending modulus. To sum up: 

• For relatively big values of bending modulus the first bifurcation is dominated 
by symmetric shapes, for intermediated values by asymmetric ones and for 
relatively small values of b̂k  symmetric shapes characterize again the first 
bifurcation. 

• The asymmetric branches evolve only subcritically, while the symmetric ones 
transcritically. 

• In polymers, when the first bifurcation is symmetric, an asymmetric branch 
emerges from the symmetric solution. 

• As the subcritical branch of the primary bifurcation evolves towards lower 
external loads, it exhibits a limit point and becomes linearly stable with lower 
energy than the spherical branch and a contact area as the two poles merge  

• The contact zone in polymers is obtained in very small values of the volume, 
while in lipids in higher. 
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7.2 Future directions 

In the future the following aspects could be studied in order to improve the above results 
or starting from them to explore new problems: 

Contact problem: 
• Considering the contact as a non-symmetric problem with respect to the 

equator, which will probably refine deviations between numerical and 
experimental results. 

• Capturing of the third curved upwards regime in experimental f-d curves of 
polymeric coatings via FEM. 

• Further calculations and simulations for a free microbubble, which could 
describe the behavior of nano-bubbles. 

• Further calculations on the estimation of phospholipid elastic properties. 
• Experiments for phospholipid microbubbles to verify the curved upwards 

regime by focusing on higher deformations. 
• Asymptotic analysis on the transition regime and extraction appropriate 

boundary conditions for trapped microbubbles. 
• Simulation of a trapped microbubble with the disjoining pressure. 
• The 3d analysis is very interesting from the modelling point of view, but for the 

AFM experiments the deformations are relatively small, thus the axisymmetric 
analysis is sufficiently acceptable. 
 

Bifurcation diagrams: 
• Further calculations in order to better understand the nature of the supercritical 

symmetric branch as wellas the secondary bifurcations it may entail. 
• Verify the effect of mode coalescence in the bifurcation diagram for specific 

parameter values. 
• Formulate and simulate the contact zone in relatively small volumes. 
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Appendix A 
Spherical representation 

The covariant tangent vectors along the s and φ direction are defined as: 
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( ) ( )
1 2

1
, where , 1,2 or  and  and  

j
ji t n

t i j s i j
t t n

ϕ
− ×

= = ≠
⋅ ×
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The above expression could also be obtained by the first and second fundamental forms of the 
surface. 
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Cylindrical representation 

The covariant tangent vectors along the s and φ direction (spherical) are defined as: 
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The above expression could also be obtained by the first and second fundamental forms of the 
surface. 
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