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A large number of acoustic signals from single lipid-shelled Definity
VR

(Lantheus Medical Imaging,

N. Billerica, MA) microbubbles have been measured using a calibrated microacoustic system, and a

unique transient characteristic of resonance has been identified in the onset of scatter. Comparison of

the numerically obtained response of microbubbles with acoustic measurements provides good

agreement for a soft shell that is characterized by small area dilatation modulus and strain softening

behavior, and identifies time to maximum radial excursion and scatter as a robust marker of reso-

nance during transient response. As the sound amplitude increases a two-population pattern emerges

in the time delay vs the fundamental acoustic scatter plots, consisting of an initial part pertaining to

microbubbles with less than resonant rest radii, which corresponds to the weaker second harmonic

resonance, and the dominant resonant envelope pertaining to microbubbles with resonant and greater

than resonant rest radii, which corresponds to the primary and subharmonic resonances.

Consequently, a wider resonant spectrum is observed. It is a result of the strain softening nature of

soft lipid shells, based on which the microbubble sizes corresponding to the above resonances

decrease as the sound amplitude increases. This bares an impact on the selection of an optimal

microbubble size pertaining to subharmonic imaging. VC 2018 Acoustical Society of America.

https://doi.org/10.1121/1.5026021

[GH] Pages: 1392–1406

I. INTRODUCTION

The introduction of viscoelastic shells to physically sta-

bilize microbubbles over prolonged periods in vivo
(Feinstein et al., 1990) has enabled their safe and reproduc-

ible usage as contrast agents in diagnostic ultrasound, pro-

viding locally increased echogenicity while improving the

sensitivity and specificity of diagnostic imaging. By enhanc-

ing the contrast at the tissue–blood interface, information on

the dynamics of the vascular bed can be provided (Ferrara

et al., 2007; Kaufmann et al., 2007). However, qualitative

measurements are limited for diagnostic evaluation and the

primary aim of contrast enhanced ultrasound (CEUS) has

been to assess microvascular flow and volume quantitatively

(Strouthos et al., 2010). The knowledge of the interaction of

microbubbles with ultrasound has advanced considerably

(Sboros, 2008). In addition, new ultrasound techniques that

aim to increase spatial resolution by tracking the echoes of

single microbubbles have been developed (Christensen

et al., 2015; Errico et al., 2015). The understanding of the

evolution of a microbubble echo during an exposure to ultra-

sound becomes more important. The unique and largely

unexplored effect of the protective coating, especially for the

case of lipid shells (Overvelde et al., 2010; Tsiglifis and

Pelekasis, 2013) that are used commonly, provides the

potential for significant improvement in contrast-to-tissue

ratio and identification of an individual microbubble signa-

ture that enables robust tracking.

Here we deal with a particular oscillatory signature asso-

ciated with resonance and that can be unique to a microbub-

ble. This behavior is fundamental in the understanding of

the dynamics of contrast bubbles that has been under-

investigated. Previous studies have characterized microbubble

response by studying the acoustic emissions and absorption

characteristics from high concentrations of microbubbles,

deducing the overall resonance behavior of the sample

(Frinking and de Jong, 1998; Shi and Forsberg, 2000). Such

approaches provided microbubble population measurements

and are thus limited in providing individual microbubble sig-

natures. More recently, a large number of publications have

studied the oscillations of microbubbles in the presence of

ultrasound fields by employing ultrahigh speed optical imag-

ing to capture the radial oscillations with time (Bouakaz

et al., 2005; Chin et al., 2003; Dayton et al., 1999), which has

uncovered examples of previously unseen microbubble

behavior (Postema et al., 2003; Emmer et al., 2007; de Jong

et al., 2007). A common thread in most of these pioneering

studies was the short pulse duration that did not reveal acous-

tic response patterns during ultrasound exposure. The varia-

tions of microbubble size and shell parameters within a

typical sample of contrast agents (Postema et al., 2003) dic-

tate that a large number of single scatter data are necessary to

obtain information on the variability of microbubble response.

In particular, optical techniques employed for capturing thea)Electronic mail: pel@uth.gr

1392 J. Acoust. Soc. Am. 143 (3), March 2018 VC 2018 Acoustical Society of America0001-4966/2018/143(3)/1392/15/$30.00

https://doi.org/10.1121/1.5026021
mailto:pel@uth.gr
http://crossmark.crossref.org/dialog/?doi=10.1121/1.5026021&domain=pdf&date_stamp=2018-03-01


time evolution of bubble radius during small amplitude oscil-

lations reveal the resonant pattern of coated microbubbles and

provide estimates of the shell elasticity and viscosity (van der

Meer et al., 2007). Furthermore, optical studies (Emmer

et al., 2007; de Jong et al., 2007; Dayton et al., 1999; Morgan

et al., 2000) establish that microbubbles are resonant bodies

that pulsate in a nonlinear fashion in response to ultrasound,

and attempts to explain the physical origin of these have been

made (Marmottant et al., 2005; Tsiglifis and Pelekasis, 2008;

Overvelde et al., 2010).

In order to deduce useful conclusions on the physical

behavior of bubbles, the majority of the available studies con-

centrate commonly on the steady state of oscillating response,

which is well after the initial response. The transient response

arising from the natural resonance frequency is therefore

nearly always ignored and the related literature is then sparse.

However, for very short pulse durations even at low pressure

amplitudes transient effects are manifested in the acoustic

response. The importance of identifying resonance conditions

from transient data has been previously investigated in the

context of free bubbles (Flynn and Church, 1988), where it

was seen that imposition of an ultrasonic wave of a certain

large amplitude (5 Atm) facilitates the onset of transient cavi-

tation of smaller and smaller bubbles as the sound frequency

increases. Using the Rayleigh–Plesset model, Leighton

(1989) presented results on the oscillations of free bubbles,

which included initial transient oscillations. He thus showed

that before the oscillations settle to the steady state response,

the short-lived transients can enhance the amplitude of oscil-

lations, in some cases leading to unstable cavitation or the

collapse of smaller bubbles.

Similar effects, associated with the impact of the phase

of the pulse on the acoustic response, are discussed by

Morgan et al. (2000). They have used a modified Herring

equation with parameters fitted to optically observed oscilla-

tions of an experimental lipid shelled contrast agent, MP1950

(Mallinckrodt, Inc., St. Louis, MO), to distinguish that tran-

sient effects may appear on the first few cycles of response at

relatively low acoustic pressures (�100 kPa). By comparing

single cycle transmit pulses starting with either compression

or rarefaction (i.e., 180� out of phase), they predict that the

initial cycles of bubble oscillation are initiated by the driving

rarefaction in either case, causing a lower mean frequency

echo from transmission of compression first. The transient

response, which is dependent on both bubble size relative to

resonance and individual shell parameters, gradually damps

out as the duration of the driving pulse increases.

Acoustic studies of single microbubbles have also been

performed (Sboros et al., 2003), enabling the absolute mea-

surement of scatter (Thomas et al., 2009a; Sijl et al., 2008). In

comparison to optical data (Sijl et al., 2011) that measure

radial oscillations, the acoustic experiments measure the scat-

tered pressure field, which is a consequence of shell velocity

and acceleration (de Jong et al., 1994b; Church, 1995; Goertz

et al., 2007; Thomas, 2009b). Acoustical studies thus offer

information directly relevant to the application of microbub-

bles in imaging by enabling echo processing investigations

(Thomas et al., 2009a). However, although of high relevance

to imaging, it remains unclear whether microbubbles resonate

or not in vivo. The reference to resonating microbubbles is

very common in the literature, but current signal processing,

which includes pulse sequences such as pulse inversion and

amplitude modulation, exploits only the fact that microbubbles

behave nonlinearly without distinguishing between resonance

and off resonance. However, it is now known that resonant

microbubbles provide a transient acoustic response of growing

amplitude (Thomas et al., 2009b). This work is further investi-

gated here aiming to further our understanding of the relation-

ship between resonance and transient acoustic response, which

may be controlled by employing the nonlinear nature of the

microbubble shell constitutive law, especially at large sound

amplitudes.

Theoretical modeling of the oscillations of microbub-

bles has been the subject of many studies. Several models

based on the Rayleigh–Plesset equation have been developed

to account for various aspects of the encapsulating shell

behavior. de Jong et al. (1994a,b) and Church (1995) have

extended the Rayleigh–Plesset model further by including

extra terms for shell damping, relating shell elasticity and

viscosity parameters to experimental data from attenuation

and backscattering measurements. More recently, the

Kelvin–Voigt model has been used to model the shell

mechanical behavior, coupled with the Keller–Miksis model

(Keller and Miksis, 1980) for the bubble acoustic response,

to derive expressions of resonance frequency and damping

coefficients, and to account for nonlinearity in the shell

response as a result of large amplitude sonication and depar-

ture of the shell constitutive law from linearity (Tsiglifis and

Pelekasis, 2008). Numerical solution of these various mod-

els, which has been used for a comparison to the data from

high speed optical experiments, allows for calculation of the

bubble radius as a function of time. An important criticism

for such a comparison comes from the fact that the majority

of optical experiments are done next to a boundary, e.g., the

capillary wall, which is often not taken into consideration in

these comparisons. As the capillary wall adds to the com-

plexity of the flow arrangement, microbubbles pulsating at a

distance from boundaries, such as those that are obtained via

manipulation with optical tweezers (Dollet et al., 2008), pro-

vide experimental data that are optimal for such compari-

sons. However, these experiments are difficult to make and

thus sparse in the literature. The microbubble scatter pres-

sure can be viewed as an alternative or a complementary

physical quantity that can provide a comparison between

theory and experiment. The theoretical scattered pressure

can be calculated by using the Bernoulli equation to relate

pressure to the velocity/acceleration of the bubble wall. In

this way, theoretical models of microbubble behavior can be

directly compared to both acoustic and optical experimental

measurements, allowing significant additional physical

insight on the behavior of the shell. It should be stressed,

however, that in the present study nonspherical effects are

not accounted for in the analysis that is presented, and there-

fore special care is taken in our experiments to avoid jetting

or breakup phenomena, such as those that occur during

acoustic measurements when microbubbles pulsate next to a

rigid boundary at large amplitudes.
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Presented here is a combined experimental and theoreti-

cal investigation into the single pulse response of the con-

trast agent Definity
VR

(Lantheus Medical Imaging, N.

Billerica, MA). The aim of this paper is to study the effect of

resonance on the transient response of a lipid contrast agent

with a disperse size distribution with emphasis placed on the

effect of increasing sound amplitude. Previous literature sug-

gests that transient response in the emissions from short

diagnostic pulses, such as the ones investigated here both

experimentally and theoretically, may provide significant

information (Leighton, 1989; Morgan et al., 2000; Thomas

et al., 2009b; Raymond et al., 2015). More importantly, the

comparison of transient response in the theoretical and

experimental data may provide a significant test for the con-

stitutive law, an important implication that is also discussed

herein. Careful analysis of the acoustic data obtained in the

present study reveals that resonant behavior can be captured

even from relatively short range pulses by utilizing the rich

harmonic content of the backscattered pressure signal from

soft phospholipid shells, as well as the time required for res-

onant response to take place between the forcing and the nat-

ural frequency of the microbubble.

II. METHODS

A. Theory of microbubble response

1. Basic formulation and numerical methodology

The effect of the transient response on resonant scatter

is investigated here using the Keller–Miksis (Keller and

Miksis, 1980) model that accounts for a moderately com-

pressible surrounding fluid (see also Prosperetti and Lezzi,

1986), adapted by Tsiglifis and Pelekasis (2008) for the

forced oscillations of encapsulated bubbles by incorporating

various constitutive laws pertaining to the mechanical

behavior of the shell. The incident pressure waves as mea-

sured experimentally using a membrane hydrophone were

used as the driving force in the model. The soft phospholipid

shell of Definity
VR

(Lantheus Medical Imaging, N. Billerica,

MA) is treated as a strain-softening material in the manner

defined by the Mooney–Rivlin (MR) constitutive law, as

originally proposed by Tsiglifis and Pelekasis (2008, 2011,

2013); see Eqs. (3a) and (3b) below for spherosymmetric

pulsations of a coated microbubble, and verified later via

systematic acoustic measurements (Thomas et al., 2009b)

and independent simulations (Paul et al., 2010).

When the wavelength of the acoustic wave is much

larger than the bubble radius the far field pressure and radial

position of the coating assume the form

R ¼ 1þ eRd; P1 ¼ Pst þ ePst sin ðxf tÞ; (1)

with Pst and e denoting the static pressure and amplitude of

the external forcing, respectively, R,Rd are the dimensionless

instantaneous radial position and its deviation from the stress

free radius R0 taken as the characteristic length, respectively,

and xf is the forcing frequency. The nonlinear ordinary differ-

ential equation (ODE) that describes the acoustic response of

a radially pulsating microbubble has been solved numerically

for a variety of bubble radii and acoustic disturbances using

the numerical methodology developed previously (Tsiglifis

and Pelekasis, 2008). The latter entails employment of the

Runge–Kutta time integrator coupled with the adiabatic law

of ideal gases for the evolution of the radial position and

internal pressure. The scattered pressure PSc at a distance

r¼ 0.075 m for a given microbubble radius R0 was calculated

in order to match the measured values. Once microbubble

scattered acoustic signals were calculated, similar analysis as

performed on the experimental signals was performed in

terms of the Fourier spectrum and root-mean-square (RMS)

of the scattered pressure and the extraction of 95% response

time, Dt95%, in order to allow comparison; Dt95% signifies the

time required to achieve 95% of maximum scattered pressure.

The shell parameters of the model and the incident pulse

duration were varied in order to investigate the effect of tran-

sient response on longer pulses, up to 30 cycles, as well as

the possibility for the onset of steady pulsations. The experi-

mental setup did not allow pulses of this duration to be mea-

sured as the pulse length was limited by the maximum

separation between microbubbles that the flow tank would

allow for a reasonable sampling-time interval to be estab-

lished. However, numerical analysis allows for the investiga-

tion of a wider parameter range, thus, providing further

insight on the short pulse experimental results in contrast to

those pertaining to steady pulsation. This long duration ena-

bles steady pulsation to be established and an investigation

on the relation between transient response and constitutive

law to be carried out.

The main parameters used to describe the behavior of

the encapsulating lipid shell are the area dilatation modulus

vs¼ 3dsGs, with ds and Gs denoting shell thickness and

stiffness, respectively, and shell viscosity ls (Hoff et al.,
1996). The values for these are initially chosen as ls¼ 1 Pa

s and vs¼ v¼ 2.25 N/m, corresponding to effective shell

thickness and stiffness on the order of ds¼ 15 nm and

Gs¼ 50 MPa, respectively (Goertz et al., 2007; Cheung

et al., 2005). It should also be stressed that, due to the

nature of phospholipid shells, their shell thickness cannot

be easily defined hence the area dilatation modulus, v,

along with bending resistance, kb, are considered as the pri-

mary shell mechanical properties. These values have been

shown previously to provide a reliable fit on the scatter

from a distribution of Definity
VR

(Lantheus Medical

Imaging, N. Billerica, MA) microbubbles, in the form of

scattering cross-section and resonance frequencies (Tsiglifis

and Pelekasis, 2008; Thomas et al., 2009b; Tsiglifis and

Pelekasis, 2011);

x0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3c� 1ð Þ 2r

q‘R
3
0

þ 3cP1
q‘R

2
0

þ 4v

q‘R
3
0

s
: (2)

Primary resonance frequency (xres) and the associated pri-

mary resonance radius (Rres) is defined as the frequency at

which fundamental scatter is at a maximum (Church, 1995;

Khismatullin and Nadim, 2002; Tsiglifis and Pelekasis,

2008). In this fashion, the radial position of the microbubble

interface with the surrounding medium is obtained by
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solving a nonlinear ODE that incorporates the effects of shell

elasticity and viscosity along with inertia, compressibility,

and viscous effects from the surrounding medium. The

model equations for a strain softening shell without pre-

stress are reproduced below for completeness, as introduced

by Tsiglifis and Pelekasis (2008),

1�M _R
0� �

R0 €R
0 þ 3

2
�M _R

0

2

� �
_R
02

¼ 1þM _R
0� �

P0jr¼R � P0st � P0Ac

� �
þMR0

d

dt0
P0jr¼R � P0Ac

� �
; (3a)

P0jr0¼R0 ¼
2

We
þP0st

� �
1

R0

� �3c

� 2

WeR0
� 4

Rel

_R
0

R0

� 4m

Rel

_R
0

R02
� 2

G

R0
1� 1

R06

� �
; t0 ¼ xf t;

R0 ¼ R

R0

; (3b)

P0 ¼ P

qx2
f R2

0

; G ¼ vs

3qlx
2
f R3

0

; m ¼ 3ls

llR0

;

Rel ¼
qlxf R

2
0

ll

; We ¼
qlx

2
f R3

0

r
; M ¼ R0xf

c
; (3c)

in the above relations primes signify dimensionless quanti-

ties defined via the initial bubble radius R0 and forcing fre-

quency xf, and M denotes the Mach number taken to be

small.

In order to obtain a reliable estimate of shell thickness

of lipid shells we have also carried out a parametric study in

the area dilatation modulus vs, and investigated the impact

on the acoustic response of both MR and Hooke’s law.

2. Theoretical basis of the transient response

Figure 1 shows examples of the radial time series for

coated microbubbles below, at and above resonance, in

response to a 6 cycle [Figs. 1(a)–1(c)] and 20 cycle [Figs.

1(d)–1(f)] acoustic disturbance. The former case simulates a

situation where transient response is still dominant, whereas

in the latter the onset of steady pulsations is evident toward

the end of the pulse. Nevertheless, the aspects of resonant

response are evident in both cases. In particular, the bubble

acoustic response occurs as a superposition of two oscilla-

tions: (1) the steady state oscillation at the driving frequency

xf, and (2) a damped natural oscillation at the natural fre-

quency of the resonator x0, which is subject to an approxi-

mately exponential decay, xR governed by the damping

characteristics of the system. If the two responses are in

phase, as occurs when a microbubble is driven approximately

at resonance [Figs. 1(b) and 1(e)] energy transfer between the

two modes of oscillation takes place. Consequently, the

amplitude of the radial time series is modulated and grows

over time during the phase of transient pulsation, eventually

settling to the steady state response as the transient damps out

(Flynn and Church, 1988). This will generate an envelope of

response in experimental and theoretical data near resonance

before steady pulsation is achieved, and it is the expression

of the delay of the onset of maximum response. Figures

1(g)–1(i) and 1(j)–1(l) depict the amplitude of the major

Fourier components in dB pertaining to the RMS scattered

pressure at a distance of 7.5 cm from the microbubble center

over the duration of a 6 and 20 cycle pulse, respectively,

pSc ¼ p� p1 � �q
@/
@t
¼ qR

d
ðR €R þ 2 _R

2Þ; (4a)

pSc tð Þ ¼
X1

n¼�1
cne�i 2np=DTð Þt ! pSc;RMS

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

0 þ
X1
n¼1

jcnj2

2

vuut ; (4b)

Pn;Amp ¼ 20 Log

ffiffiffiffiffiffiffiffiffi
jcnj2

2

s

pRe f

0
BB@

1
CCA
; pRe f ¼ 1 atm: (4c)

Corrections to the scattered pressure due to compressibility

effects are dropped as they are order M2 (Keller and Miksis,

1980), with M¼ (R0xf)/c denoting the Mach number of the

flow and c � 1500 m/s is the speed of sound in the liquid.

Primary resonance is dominated by the fundamental compo-

nent and this is illustrated by the fast Fourier transform

(FFT) decompositions shown in Figs. 1(h) and 1(k), corre-

sponding to the RMS scattered pressure calculated for the

radial time series shown in Figs. 1(b) and 1(e). The latter

graphs clearly illustrate the resonant envelope and the

accompanying growth of the radial position.

If the frequencies xf and x0 are sufficiently different

then, depending on whether the bubble is insonated below or

above resonance, two different types of response are regis-

tered. For bubbles whose sizes are below resonance, i.e., x0 is

larger than xf, viscous damping is larger and steady pulsations

are achieved quickly (i.e., the insonating pulse is of identical

shape to the scattered one) as illustrated in Figs. 1(a) and 1(d).

In this case the fundamental and second harmonic compo-

nents of the FFT spectrum are of the same order, as shown in

Figs. 1(g) and 1(j). Furthermore, due to their larger resonance

frequency such relatively small bubbles tend to participate in

second harmonic resonance, 2xf, as the sound amplitude

increases. For relatively large bubbles damping is relatively

weak, and both modes of pulsation are evident for a longer

time period with the maximum occurring at an earlier stage of

the pulsation [Figs. 1(c) and 1(f)]. It should also be noted that

for such large bubbles, whose resonant frequency is smaller,

the possibility of subharmonic resonance is also present, and

this is manifested in the gradual onset of the subharmonic

component, xf/2, in the FFT spectra shown in Figs. 1(h) and

1(k). The latter effect will be seen in the following to be more

pronounced especially for large sound amplitudes. In fact,

nonlinearity is known to decrease or increase the resonance

frequency depending on the nature of the oscillator while

introducing additional modes of pulsation in the dynamic

response. In this context, Church (1995) refined the

Rayleigh–Plesset model for the albumin shelled agent

J. Acoust. Soc. Am. 143 (3), March 2018 Efthymiou et al. 1395



Albunex
VR

(Molecular Biosystems, San Diego, CA), and

obtained a weakly nonlinear analytical solution for the nonlin-

ear ODE describing the bubble oscillation. He focused on the

part of the microbubble response where the pulsation is steady

and captured the onset of harmonics during the periodic bub-

ble pulsation as a function of the acoustic pressure amplitude.

B. Experimental methodology

The experimental method has been previously detailed

in Sboros et al. (2005). Briefly, acoustic signals from single

Definity
VR

(Lantheus Medical Imaging, N. Billerica, MA)

phospholipid shelled coated microbubbles containing an

octafluoropropane (C3F8) gas have been measured experi-

mentally using a modified commercial ultrasound imaging

system (Sonos5500, Philips Medical Corp, Andover, MA)

with a fully characterized transmitter and receiver, allowing

calibrated radio frequency (RF) signals to be obtained. The

incident acoustic field was measured using a 0.2 mm active

element membrane hydrophone (Precision Acoustics Ltd.,

Dorchester, UK). The transmit frequency was set at

FIG. 1. Numerically obtained radial time series in response to a sinusoidal disturbance of rectangular shape with frequency 1.6 MHz and amplitude 100 kPa

that lasts over 6 cycles, graphs (a)–(c), and over 20 cycles until steady pulsation has been achieved, graphs (d)–(f). The MR shell model is employed (Tsiglifis

and Pelekasis, 2008) with shell parameters vs¼ 2.25 N/m and ls¼ 1 Pa s. Graphs (g)–(i) and (j)–(l) provide the fast Fourier transform (FFT) decomposition of

the root-mean-square (RMS) scattered pressure, calculated via Eq. (4) for the cases shown in (a)–(c) and (d)–(f), respectively.

1396 J. Acoust. Soc. Am. 143 (3), March 2018 Efthymiou et al.



1.6 MHz, and the acoustic pressure ranged from 187 to

550 kPa peak negative pressure. Optical studies show a frag-

mentation threshold around 300 kPa (Chomas et al., 2001),

but this is obtained under the optical experiment conditions

where the microbubbles are in contact with the tube wall. An

extensive comparative review suggests that in free space the

fragmentation threshold is at much higher acoustic pressures

and correlates with microbubble disruption (Stride and

Saffari, 2003; Sboros, 2008). This is supported by data for

Definity
VR

(Lantheus Medical Imaging, N. Billerica, MA)

microbubbles that show that below 500 kPa nearly all micro-

bubbles survive (Sboros et al., 2007). Thus, the adopted

acoustic pressure range here provides very little destruction,

which only occurs for quite large rest radii (R0� 5 lm). For

this reason we rejected microbubble echoes that do not pro-

vide similar amplitude in response to the second insonation.

RF scatter data sampled at 20 MHz were recorded at a dis-

tance of 1 cm between 7 and 8 cm from the face of the trans-

ducer. The backscattered RF data were calibrated using

individual copper spheres (Sboros et al., 2005). Low concen-

trations of contrast agent were injected into a flow tank, allow-

ing a submillimeter-wide stream of single microbubbless to

be directed along the axis of the ultrasonic beam as previously

(Sboros et al., 2007; Thomas et al., 2009b). This ensures that

each microbubble will be in the center of the ultrasound path,

and will be insonated by the same acoustic pressure (Sboros

et al., 2007; Thomas et al., 2009b). A suitable concentration of

microbubbles (1 in 10 000 by volume) and a low pulse repeti-

tion frequency (i.e., one imaging pulse every 2 s) gave an aver-

age of one microbubble in the 1 cm axial region of interest

every three imaging pulses, thus, ensuring a very low probabil-

ity of having two microbubbles within a scattered pulse of

identical duration to the transmit. Data were collected in

batches of three repeat measurements at each set of incident

parameters. The pulse length was set at six cycles, which is a

sufficiently long pulse to observe the transient response. The

choice of longer pulses is desirable but rather problematic

under the current experimental setup: (a) a longer region of

interest would need to be chosen (longer than 1 cm), which

would subject microbubbles to wider range of acoustic pres-

sures and (b) there is a higher probability of overlapping scatter

signals, which may affect the quality of the data. Custom soft-

ware allowed individual lines of RF echo to be captured and

converted to text files for further analysis in MATLAB (R2007b,

MathWorks, MA). A sum-squares technique was used to iden-

tify microbubble signals that are above noise, and a semi-

automatic edge detection method used to define the start and

end of each microbubble signal. Once individual microbubble

RF signals were extracted, the duration of the transient compo-

nent of response was identified by calculating the time taken

from the onset of scatter to reach 95% of the maximum ampli-

tude obtained in each signal (Dt95%). RF signals were corrected

for offset and decomposed into their fundamental and har-

monic signals, using a fourth-order elliptical filter with a pass-

band of 800 kHz centered at the respective frequencies. This

allowed the individual components of harmonics to be cali-

brated in an absolute manner (Sboros et al., 2005) and thus

compared with theoretical scatter. From these calibrated sig-

nals, RMS fundamental and second harmonic pressures were

calculated, and results presented here are given in values of

Pascals (Pa); capturing the subharmonic component of the

acoustic response was beyond the capabilities of the receiver,

hence, it is not shown in the experimental results that follow

(Sec. III). Signals have been classified as resonant or nonreso-

nant using a cluster method depending on fundamental domi-

nance of scatter (Thomas et al., 2009b), and they are analysed

with respect to their duration of transient response (Dt95%).

III. RESULTS AND DISCUSSION

A. Experiment

Signals from both resonant and nonresonant microbubbles

were detected in response to a six-pulse cycle with a frequency

of 1.6 MHz and a peak negative pressure of 550 kPa, with a

marked difference in the amplitude and envelope shape

between the two. Figure 2 shows RF signals, frequency spectra,

and fundamental filtered signals from four example bubbles:

two microbubbles below resonance and two microbubbles at or

above resonance. The microbubble signals shown in Fig. 2 are

measured in response to the same incident pulse parameters,

and show typical behavior of either off-resonance [Figs. 2(a)

and 2(b)] or resonance scatter [Figs. 2(c) and 2(d)]. Resonant

bubbles are characterized by increased amounts of fundamental

scatter, as shown in Fig. 2(e), which is a scatter-plot showing

the fundamental and second harmonic components of RMS

scattered pressure in each case of 235 single acoustic micro-

bubble signals. Twenty-six microbubble signals have been

classified as resonant using a cluster method dependent on fun-

damental dominance of scatter (Thomas et al., 2009b). These

primary resonant scatterers account for 11% of the total bubble

signals measured, and produce the majority of the total funda-

mental energy of scatter: 70% of the fundamental, 15% of the

second harmonic.

The six cycle RF signals show the effect of resonance on

both frequency content and envelope of response. Bubbles

below resonant size [Figs. 2(a) and 2(b)] emit strongly har-

monic signals with fundamental to harmonic ratio of order 1.

They have an approximately rectangular envelope of response,

similar to the transmit pulse. Here we use time taken to reach a

value of 95% of peak scatter (Dt95%) as a measure for the dura-

tion of the transient response. In response to 550 kPa, nonreso-

nant bubbles, i.e., RMS fundamental scatter less than 8 Pa, all

have Dt95%< 2.5 ls with a mean value Dt95% ¼ 2.2 6 0.8 ls.

It will be seen in Sec. III B that these are small bubbles that

exhibit a second harmonic resonance pattern.

A typical bubble of resonant size emits a high amplitude

signal with an increased fundamental component of scatter

(fundamental to harmonic ratio has been measured up to 4),

and shows an increasing amplitude of scatter with time, as

shown in the envelopes of RF signals in Figs. 2(c) and 2(d). In

response to 550 kPa, bubbles of RMS fundamental scatter

greater than 8 Pa, i.e., resonant bubbles, all have Dt95%> 2.0 ls,

with a mean value Dt95% ¼ 3.4 6 0.5 ls; the latter value corre-

sponds to the total pulse duration and is a manifestation of

the clipping effect due to the short pulse duration. The same

maximum value of Dt95%, Dt95%¼ 3.8 ls, occurs at the small-

est value of resonant scatter, fundamental RMS � 8 Pa, but

also for a much larger value of fundamental RMS � 20 Pa.
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Figure 3 shows the variation of Dt95% with incident acoustic

pressure [Fig. 3(a) 187 kPa, Fig. 3(b) 275 kPa, Fig. 3(c)

375 kPa, Fig. 3(d) 550 kPa], illustrating this resonance charac-

teristic. In response to each increasing acoustic pressure two

distinct maxima occur at the maximum value Dt95% � 3.8 ls;

the first one takes place at the onset of resonant acoustic signal

and the second for a larger value of fundamental RMS. In fact,

as the sound amplitude increases the second one provides the

absolute maximum in time delay Dt95%. This is attributed to

resonant and larger than resonant bubbles that exhibit funda-

mental and subharmonic resonance, respectively, and results in

the widening of the resonant envelope in the time delay vs fun-

damental scatter plots. The increasing envelope of scatter at

increased amplitudes has previously been identified as a

characteristic of forced damped harmonic oscillators driven at

resonance. It is suggested here that as the sound amplitude

increases a progressively larger number of bubbles enters the

envelope of resonant scatter signifying the reduction in resonant

frequency with increasing amplitude and the widening of the

resonant spectrum that contains the fundamental and subhar-

monic resonances. A more detailed discussion illustrating this

issue follows in Sec. III B, theory and simulation.

B. Theoretical analysis and simulations

Figure 4 shows example radial oscillations as predicted

by the model proposed by Tsiglifis and Pelekasis (2008),

which incorporates a MR shell model, for below resonance,

FIG. 2. (Color online) Definity
VR

(Lantheus Medical Imaging, N. Billerica, MA) single microbubble acoustic signals in response to a six cycle 1.6 Hz 550 kPa

incident pulse. Signals from bubbles below resonance (a),(b) and bubbles at and above resonance (c),(d) are shown, with a clear difference in both amplitude

and envelope of response. Radio frequency (RF) signals are shown (top) with the amplitude of FFT shown below, normalized to peak scatter measured.

Fundamental and second harmonic frequencies of transmit are indicated with grey dashed lines, showing a decreased frequency of scatter in both in the reso-

nance bubbles, with a larger shift at the second harmonic value. RMS components of fundamental and second harmonic scatter are displayed in scatter graph

(e), showing increased fundamental scatter in resonant bubbles. Equal fundamental and second harmonic is shown with a grey dashed line.
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resonant, and above resonance sizes, and the same shell vis-

coelastic parameters as in Fig. 1. The incident acoustic pulse

was the same as for the experimental signals shown in Fig.

2, i.e., a rectangular pulse with a duration of six cycles at

1.6 MHz (Dt� 4 ls) amplitude set to 550 kPa and varying

rest radius. The simulated radial oscillations shown in Figs.

4(a)–4(d) show similar characteristics as those measured

experimentally [Figs. 2(a)–2(d)]. The simulations were

repeated for a pulse duration of 20 cycles [Figs. 4(e)–4(h)] in

order to illustrate the transient nature in the responses cap-

tured for 6 cycles [Figs. 4(a)–4(d)] without, however, exhib-

iting any significant compromise in the resonant behavior of

the pulsating microbubbles. Furthermore, Figs. 4(i)–4(p)

provide the FFT spectra of the simulated RMS scattered

pressure signals illustrating similar deviations between pri-

mary and off-primary resonant scatter with the measured

values [Figs. 2(a)–2(d)] while revealing the importance of

subharmonic resonance, especially for large bubbles. No sig-

nificant deviations are registered in the response to a 6 and

20 cycle pulse, besides the onset of steady pulsations beyond

a certain time interval.

For bubbles below the resonance radius with R0

� 2.8 lm, radial time series are provided in Figs. 4(a) and

4(e) in response to 6 and 20 cycle pulses, the MR model pre-

dicts a highly harmonic scattered pressure signal that is domi-

nated by the second harmonic component [Figs. 4(i) and 4(m)]

with constant amplitude across the six cycle response that is

quite similar to the transmitted pulse. The time taken for the

signal to grow to 95% of maximum scatter occurs within the

first cycle of response, and it is approximately Dt95%¼ 1 ls

and followed by the onset of steady pulsations. As the bubble’s

radius is increased toward the primary resonance radius, radial

time series at R0 � 3.5 lm and 5.3 lm are provided in Figs.

4(b), 4(c), 4(f), and 4(g) in response to a 6 and 20 cycle pulse,

respectively, both the amplitude of oscillation and energy of

acoustic scatter increase sharply, and the oscillation becomes

dominated by the fundamental driving frequency [Figs. 4(j),

4(k), 4(n), and 4(o)]. The envelope of the oscillation is evident

across the 6 and 20 cycle responses due to the large sound

amplitude transfer of energy between the natural oscillation

and emerging harmonics being intensified, especially the sec-

ond harmonic and subharmonic components, and the time

required for steady pulsation to take place increases; see Figs.

4(b), 4(c), 4(d), 4(f), 4(g), and 4(h) pertaining to equilibrium

radii R0¼ 3.5, 5.3, and 7.5 lm and e¼ 5.5. When the bubble

radius is relatively small, i.e., R0¼ 3.5 lm, the peak scatter

occurs at the end of the third cycle of the response and the

scattered pressure contains a significant second harmonic com-

ponent [Figs. 4(j) and 4(n)], both in the transient and steady

phases of the pulsation. As the bubble size further increases it

reaches the realm of subharmonic resonance, R0¼ 5.3 and

7.5 lm, and its response is characterized by an increasing sub-

harmonic component of the scattered pressure [Figs. 4(k), 4(l),

4(o), and 4(p)] that maximizes the value of Dt95%.

Figure 5 is an attempt to reproduce the dynamic

response from a bubble population captured by acoustic

measurements in the manner depicted in Figs. 2(e) and

3(a)–3(d). Since the exact parameters of the population are

not known we assume a uniform size distribution ranging

from 2 to 8 lm, and calculate the RMS components of the

scattered pressure for a microbubble with rest radius in the

above range. The results are then plotted so that each point

corresponds to values obtained for a certain rest radius with

each value carrying the same weight over the total popula-

tion. In this fashion the relative importance of fundamental,

second harmonic, and subharmonic scatter is illustrated for

FIG. 3. (Color online) Time for the ini-

tial transient microbubble response

taken to reach a value of 95% of peak

scatter (Dt95%) plotted against funda-

mental RMS scatter (Pa) for increasing

incident acoustic pressures, (a) 187 kPa,

(b) 275 kPa, (c) 375 kPa, (d) 550 kPa.
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MR [Figs. 5(a)–5(f)], and Hookean shells [Figs. 5(g)–5(l)], as

well as the manner in which the corresponding resonances are

manifested in the graph portraying the variation of the time

delay to 95% scatter, Dt95%, as the amplitude increases. The

graphs are arranged as a function of the fundamental compo-

nent of the RMS scattered pressure with the first 3 pertaining

to a 6 cycle pulse, followed by 3 similar graphs obtained for a

longer 20 cycle pulse, in which case the microbubbles have

enough available time to reach steady pulsation.

It should be stressed that, despite the transient nature

of the dynamics in Figs. 5(a), 5(b), and 5(c), in compari-

son with the response to a longer pulse shown in Figs.

5(d), 5(e), and 5(f), respectively, the essential features of

the response are captured, namely, the onset of first, sec-

ond harmonic, and subharmonic resonance, which are

intensified as the amplitude increases. This is most dis-

tinctly manifested in the time delay graphs [Figs. 5(c) and

5(f)], which both contain three distinct maxima obtained

for relatively small, intermediate, and large values of the

fundamental component. These peaks are evident in the

variation of the second harmonic and subharmonic compo-

nents, but they are not as pronounced, especially the one

corresponding to the second harmonic. In particular, as the

sound amplitude increases the peaks in first and subhar-

monic scatter exhibit a gradually intensified deviation from

the second harmonic resonance, which is weaker and

appears for a much smaller fundamental RMS component.

In the latter range of fundamental RMS the scattered sig-

nal contains a significant second harmonic component,

which is followed by the resonant envelope mentioned

above determined by the two resonant peaks pertaining to

the fundamental and subharmonic components, as the fun-

damental RMS signal increases. A similar response pattern

is identified in the second harmonic signal and time delay

variations vs the fundamental component obtained in the

acoustic measurements reported in Figs. 2 and 3.

In the following it will be seen that the above resonan-

ces are associated with the rest radii that are below resonant

FIG. 4. Numerically obtained radial time series in response to a sinusoidal disturbance of rectangular shape with frequency 1.6 MHz and amplitude 550 kPa

that lasts over 6 cycles, graphs (a)–(d), and over 20 cycles until steady pulsation has been achieved, graphs (e)–(h). The MR shell model is employed (Tsiglifis

and Pelekasis, 2008) with shell parameters vs¼ 2.25 N/m, and ls¼ 1 Pa s. Graphs (i)–(l) and (m)–(p) provide the FFT decomposition of the RMS scattered

pressure for the cases shown in (a)–(h).
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for the second harmonic and above resonant for the subhar-

monic resonance (Figs. 6 and 7), and we will henceforth

refer to this effect as the broadening of the resonant enve-

lope. This pattern is more clearly registered in the response

to the 20 cycle pulse [Fig. 5(f)] where during the phase of

steady pulsation the fundamental and subharmonic compo-

nents are intensified at resonant conditions. It should also be

noted that due to the transient effects parameter Dt95% is

almost invariably equal to the pulse duration, Dt � 3.5 ls, in

Fig. 5(c) for large amplitudes. This is resolved in Fig. 5(f)

where a longer pulse is applied. Nevertheless, Dt95% is still

controlled by the abovementioned resonances as can be sur-

mised by cross-examining Figs. 5(a), 5(b), and 5(c) with

Figs. 5(d), 5(e), and 5(f), respectively.

Simulated signals for Hookean shells that are character-

ized by a linear constitutive law (Tsiglifis and Pelekasis,

2008) are also provided in Figs. 5(g)–5(i) and Figs. 5(j)–5(l),

for a 6 and a 20 cycle pulse, respectively, illustrating the

absence of such a tendency in the variation of the second

harmonic and subharmonic components and the time delay,

FIG. 5. (Color online) Variation of second harmonic and subharmonic components of the scattered pressure, at r¼ 7.5 cm, and the time delay to maximum

scatter Dt95% with the RMS of the fundamental component of the scattered pressure as the sound amplitude increases, subject to a 6 cycle, panels (a)–(c), and

20 cycle pulse, panels (d)–(f). The coating of the bubble is treated as a MR shell in panels (a)–(f), whereas panels (g)–(l) illustrate the same effects for a

Hookean shell. The rest of the parameters are the same as those used in Figs. 1, 4, and 5.
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Dt95%, to maximum scatter of the scattered signal from such

bubbles. The scattered echoes and time delay graphs exhibit

a linear part as a function of the fundamental component fol-

lowed by a single common peak, with the acoustic emission

from bubbles at resonance dominated by the fundamental

frequency [Figs. 5(g)–5(l)].

Figure 6 focuses on the variation in the time to peak

oscillation Dt95% at resonance for decreasing shell stiffness,

vs¼ 2.25, 1.125, and 0.45 N/m, and its correlation with the

resonant characteristics of the pulsating microbubble, in an

effort to interpret the response pattern obtained via the

simulations shown in Fig. 5 and the acoustic measurements

in Figs. 2 and 3. Bubbles of different radii and shell stiffness

have been simulated. The latter parameter is varied in an

effort to improve the agreement between experiments and

simulations in terms of the fundamental RMS and obtain

more reliable estimates of the area dilatation modulus of the

shell. Figures 6(a) and 6(b) provide the radial time series at

the respective resonant sizes that are seen to increase with

increasing area dilatation v, as expected based on linear anal-

ysis (Tsiglifis and Pelekasis, 2008). The response to a longer

pulse is shown in Fig. 6(b) with the same effect on the radial

FIG. 6. (Color online) Microbubble responses approaching resonance with different area dilatation moduli, v¼ 2.25, 1.125, and 0.45 N/m. Radial time series,

fundamental, second harmonic and subharmonic RMS pressures, as well as variation in time to 95% of peak scatter (Dt95%), are plotted against equilibrium

radius as obtained for 6 cycle, panels (a) and (c)–(f), and 20 cycle pulses, panels (b) and (g)–(j).

FIG. 7. (Color online) Variation of the time to peak scatter, Dt95%, RMS scattered pressure, and RMS of the fundamental, second harmonic, and subharmonic

components of the scattered pressure, with initial microbubble radius R0 as the incident acoustic pressure increases from 100 kPa to 550 kPa. Panels (a)–(e)

and (f)–(j) portray the response subject to a 6 and a 20 cycle pulse, respectively, for a MR shell; the area dilatation is set to v¼ 2.25 N/m, while the RMS pres-

sure has been calculated at a radial distance of 7.5 cm from the bubble center.
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time series, indicating the onset of steady pulsation. This

behavior is also reflected in the time to maximum oscillation

Dt95% plotted in Fig. 6(f), which reaches a local maximum

for an increased resonant size as the shell area dilatation

increases. In fact, upon comparing Fig. 6(f) against Figs.

6(c)–6(e) depicting a similar variation of fundamental, sec-

ond harmonic, and subharmonic RMS pressure with the rest

radius, it becomes clear that the peaks in time to maximum

oscillation Dt95% coincide with the bubble sizes that produce

maximum response in the scattered pressure with respect to

the second harmonic, fundamental, and subharmonic compo-

nents. Since this is a second-order nonlinear effect it takes

longer to evolve, and this also reflects in the resonant enve-

lope exhibited by the radial time series pertaining to the res-

onant sizes in Fig. 6(a). This resonant behavior for bubbles

with an elastic coating has also been reported elsewhere

(Church, 1995), and it is interesting to note that it correlates

well with the time to maximum scatter, even in the presence

of transients. In particular, for each value of shell stiffness

parameter a plateau in Dt95% is reached around resonance at

Dt95%¼ 4.0 ls. A maximum threshold in the time to peak

oscillation is spread across a range of bubble radii, DR0,

which is approximately DR0¼ 0.25 lm for each value of v.

Furthermore, at resonance the transient decay times, or time

to maximum response, are of similar duration to the length

of the six cycle incident pulse (Dt95% � 4.0 ls), indicating a

clipping effect that characterizes transient behavior. Finally,

it should be stressed that upon reducing the area dilatation

modulus it is observed that the fundamental RMS pressure at

resonance decreases, thus, approaching the experimentally

observed values while corroborating the conjecture that the

interrogated shells are quite soft, i.e., setting v to 0.45 N/m

provided the closest approximation to the experimental

acoustic signals among the different values that were tested.

This effort was not pursued further in the context of the pre-

sent study since parameter estimation was not our primary

concern.

The results of the simulations for longer pulses are plot-

ted in Figs. 6(b), 6(g), 6(h), 6(i), and 6(j), confirming the rel-

evance of transient signals in identifying resonance, as well

as the clipping effect of shorter pulse durations. In particular,

Fig. 6(b) shows the radial response from microbubbles with

resonant equilibrium radius corresponding to the same stiff-

ness parameters as in Fig. 6(a). It illustrates duration of tran-

sient through the time taken to reach maximum amplitude of

radial excursion when the incident pulse is 20 or more cycles

long, or � 12 ls in duration. In each case, the transient

response can clearly be seen to decay, and bubbles reach

steady state response. Resonance radius is increased accord-

ingly, from Rres¼ 2.5 lm to Rres¼ 3.5 lm and 4.5 lm as v
increases based on the fundamental response [Figs. 6(c) and

6(g)]. Figure 6(j) shows the effect of shell stiffness on the

duration of transient decay at resonance, with a stiffer shell

leading to the same increased resonant size obtained in Fig.

6(f) for a shorter pulse duration. An interesting aspect of the

response pattern portrayed in Fig. 6 is that indeed the time

delay to maximum scatter exhibits maxima that correspond

to the three major resonances, i.e., second harmonic primary

and subharmonic resonances, but the actual resonant size is

better correlated with the ones for which peaks are obtained

in the subharmonic signal. This can be verified by cross-

inspection of Figs. 6(c)–6(f) and 6(g)–6(j) where the align-

ment of the rest radii values that provide the peaks in time

delay and subharmonic signal can be verified. This is a result

of the longer time scale of the subharmonic signal, x¼xf/2,

that reflects in the time required for the amplitude modula-

tion to take place between the fundamental and the subhar-

monic components. Furthermore, the disparate resonant

sizes pertaining to the second harmonic and subharmonic

resonances is attributed to the inverse proportionality of res-

onance frequency of coated bubbles with respect to their

sizes (Church, 1995; Tsiglifis and Pelekasis, 2008); see Eq.

(2). Consequently, subharmonic resonance occurs at half the

forcing frequency and requires a larger rest radius than the

primary resonance.

As was mentioned above, the simulations indicate a

marked difference as the sound amplitude varies, mainly as a

result of the onset of the three major resonances. The latter

effect becomes evident upon careful examination of the pan-

els in Fig. 7 showing the variation of time to peak amplitude,

scattered RMS pressure, and its fundamental, second har-

monic, and subharmonic components plotted against the

microbubble radius for increasing sound amplitude. In all

cases a shift toward smaller sizes is detected at resonance,

manifested in the reduction of the rest radii producing the

dominant peaks in the scattered RMS pressure and time to

peak amplitude as the sound amplitude increases. Repeating

the simulations in response to a longer pulse duration, i.e.,

with a 20 cycle pulse, recovers the above behavior without

significant discrepancies except for the more accurate calcu-

lation of the maximum time delay pertaining to the second,

primary, and subharmonic resonant peaks as the sound

amplitude increases, without however altering the rest radii

for which these peaks occur. This kind of nonlinear behavior

at resonance has been reported by Tsiglifis and Pelekasis

(2008), and was mainly attributed to the strain softening

nature of the shell material that becomes more evident with

nonlinearity. In the latter study the same pattern of nonline-

arity assumed the form of a reduction in resonance frequency

with increasing sound amplitude for fixed equilibrium

radius. Since the reduced resonance frequency is a sign of

increased effective inertia of the microbubble with nonline-

arity, one can interpret the reduction in resonant size with

nonlinearity, for fixed frequency, as the tendency of the

microbubble to establish the same amount of effective inertia

in the face of nonlinearity by reducing its size. The same

kind of second-order nonlinear effect has been predicted and

observed previously by Morgan et al. (2000) and was attrib-

uted to the phase shift upon approaching resonance. The

same phase shift during resonance is also responsible for the

delay in achieving maximum signal, as illustrated by the

sudden peaks in Dt95% in Figs. 5(c), 5(f), 7(a), and 7(f) for

sizes that coincide with the sizes required for resonance to

take place [Figs. 7(b)–7(e) and 7(g)–7(j)].

As a result of the reduction in resonant size with

increasing amplitude, the part of the bubble population that

is in resonance increases, thus enhancing contrast in the scat-

tered signal, especially as the subharmonic component is
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intensified. In particular, for large amplitudes, e.g., e� 2.75,

the bubble acoustic response exhibits a two population pat-

tern that largely consists of the weaker second harmonic res-

onance, which is characterized by below resonance sizes and

dominates the initial linear part of the time delay vs funda-

mental RMS component plot, and the primary and subhar-

monic resonances. The latter two resonances occur for

significantly larger values of the fundamental RMS compo-

nent and generate an extended resonance envelope within

which most of the scattered signal is obtained (Figs. 5 and

7). The bubble population with a registered signal within this

envelope increases with increasing amplitude since, for a

fixed bubble size distribution, the resonant size decreases

with nonlinearity; see also Fig. 7. Furthermore, the signals

from the bubble populations corresponding to the second

harmonic resonance and the primary and subharmonic reso-

nance are becoming quite distinct with nonlinearity due to

the significantly larger fundamental signal emitted by the lat-

ter two. This feature is also evident in the experimental

results presented in Figs. 2(e) and 3, it is associated with the

resonant behavior of MR microbubbles, and can be

employed for controlling and optimizing the signal from

such bubble populations.

This pattern is in marked distinction with the behavior

exhibited by the Hookean shells for which the fundamental

resonance determines the acoustic response. It is also impor-

tant to note at this point that for Hookean shells the simula-

tions reveal a distinct tendency for a nonlinear shift toward

larger bubbles at resonance [Fig. 8] for the fundamental, sec-

ond harmonic, and subharmonic components. In contrast to

MR shells, for microbubbles with neo-Hookean-type coating

this reflects a shift to larger frequencies at resonance as non-

linearity is intensified, when their size is fixed. Similarly, the

time delay to maximum scatter only provides one peak cor-

responding to primary resonance. The emitted sound signal

consists of two almost linear regimes, corresponding to

below and above resonant bubble sizes, respectively, that

enclose a narrow regime of resonant scatter [Figs. 5(g)–5(l)].

IV. CONCLUSIONS

The impact of transient effects on acoustic signals from

pulsating microbubbles for relatively short pulses (six cycles

at 1.6 MHz) is shown to emerge in the context of harmonic

resonance as the sound amplitude increases. This is a result

of the amplitude modulation reflecting energy transfer

between the forcing and natural pulsations at resonant condi-

tions (see also Figs. 1, 2, and 4), but also between the forcing

and second harmonic and subharmonic components at large

sound amplitudes. Consequently, there is a time delay in the

system’s effort to achieve peak amplitude during steady pul-

sation, which is registered as parameter Dt95%. It was sys-

tematically seen in the context of the present study that the

time to peak amplitude Dt95% is a reliable marker of reso-

nance. It assumes a local maximum for bubble sizes pertain-

ing to the primary, second harmonic, and subharmonic

resonances (Figs. 6 and 7), and this effect is accentuated for

short pulse durations. This behavior was illustrated in the

experimental data presented herein and verified by the simu-

lations that were performed, which recovered the above

maxima of parameter Dt95% in its graph against the funda-

mental RMS pressure (Figs. 5 and 9).

The rich harmonic content manifested in the experimen-

tal measurements depicted and recovered by the simulations

is a result of the strain softening nature of the lipid mono-

layer shells (Tsiglifis and Pelekasis, 2008). An additional

important feature of strain softening shell behavior is the dis-

crepancy in resonant radius between the fundamental, sec-

ond harmonic, and subharmonic acoustic components with

increasing sound amplitude. Thus, a smaller and a larger res-

onant size are obtained in addition to the fundamental one,

which induce the appearance of a second harmonic and a

subharmonic resonant regime in the acoustic signal, respec-

tively. As a result of the reduction in the above resonant

sizes with increasing sound amplitude, in order to accommo-

date the additional inertia generated by nonlinearity for such

microbubbles, an increasingly larger number of bubbles scat-

ter sound in this regime of high harmonic content as the

FIG. 8. (Color online) Variation of the RMS scattered pressure and RMS of the fundamental, second harmonic, and subharmonic components of the scattered

pressure, with initial microbubble radius R0 as the incident acoustic pressure increases from 100 kPa to 550 kPa. Panels (a)–(d) and (e)–(h) portray the response

subject to a 6 and a 20 cycle pulse, respectively, for a Hookean shell; the area dilatation is set to v¼ 2.25 N/m and the RMS pressure has been calculated at a

radial distance of 7.5 cm from the bubble center.
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sound amplitude increases. Furthermore, a two population

pattern emerges in the emitted acoustic signal corresponding

to (a) less than resonant size bubbles, i.e., the linear part of

the second harmonic or time delay vs first fundamental plot

that contains the peak due to second harmonic resonance,

and (b) resonant and larger than resonant size bubbles, occu-

pying the resonant envelope determined by the fundamental

and subharmonic resonant peaks. Figure 9 illustrates the

above pattern in the response of a bubble population with a

size distribution [Fig. 9(h)] that is based on the one

employed in the experimental measurements shown in Figs.

2 and 3. The bubble cluster that is identified in Figs.

9(e)–9(g) as large bubbles corresponds to microbubbles with

rest radii R0� 6 lm. They are conjectured to break up during

insonation at large sound amplitudes, hence they do not reg-

ister an acoustic signal in the measurements presented in

Fig. 3. Furthermore, the area dilatation modulus v is set to

0.45 N/m in the simulations shown in Fig. 9, corresponding

to a soft shell, in an effort to recover the fundamental RMS

in the scattered pressure as accurately as possible, given the

complexity of the problem. Such an agreement is not possi-

ble with the linear Hookean shells, which do not possess the

rich harmonic content of MR shells. They are characterized

by an increase in resonant size with nonlinearity (Fig. 8),

and hence do not provide the wide resonant envelope in the

time decay vs fundamental RMS pressure plots.

Signal processing, using microbubble exposure to a

number of pulses, enables both tissue scatter cancellation

and exploitation of the microbubble nonlinear properties.

While the former has proved successful, the latter is difficult

to assess due to a lack of understanding of the physical

behavior of coated microbubbles. The response pattern

examined herein is an important aspect of the dynamic

response of lipid shells that can be used to identify the nature

of such microbubbles in acoustic measurements and provide

optimal signal processing protocols by exploiting bubble

sizes with favorable second harmonic or, preferably, subhar-

monic to fundamental harmonic ratio during resonance.
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