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Abstract
The static response of a coated microbubble subject to an external pressure
distribution is investigated, in order to identify different response patterns with
varying viscoelastic properties of the shell. Theoretical and numerical analysis
of the axisymmetric response of a microbubble is performed via the static
force balance, in order to obtain the radial and tangential (polar) displacements
of a shell subject to a uniform or point load. The stretching and bending
stiffnesses of the shell, along with the compressibility of the internal gas,
comprise the resistance to deformation of the microbubble. The finite element
methodology, with B-splines as basis functions, is employed for the solution
of the nonlinear static problem while Newton’s iterations provide the con-
verged solution. The Jacobian matrix provides necessary information regard-
ing stability of the emerging static configurations. The buckling instability of a
uniformly loaded shell results in a subcritical bifurcation that is characterized
by symmetric/asymmetric shapes for the parameter range pertaining to poly-
meric/phospholipid shells. As the relative importance of bending stiffness with
respect to stretching decreases symmetric shapes determine the primary
buckling instability. Strain softening shell behavior conforms to this pattern
due to the increase of the effective area dilatation modulus during compres-
sion. Increasing the resistance to compression forces the asymmetric and
symmetric solution families to terminate at larger bubble volumes. When a
point load is considered the force deformation curve is characterized by a
transition from a linear Reissner-type to a nonlinear Pogorelov-type response,
followed by a regime where resistance to compression dominates. Identifying
these regimes in atomic force microscopy measurements can be used for
estimating the area dilatation and bending modulus of the shell.

0169-5983/14/041422+21$33.00 © 2014 The Japan Society of Fluid Mechanics and IOP Publishing Ltd Printed in the UK 1

| The Japan Society of Fluid Mechanics Fluid Dynamics Research

Fluid Dyn. Res. 46 (2014) 041422 (21pp) doi:10.1088/0169-5983/46/4/041422

mailto:pel@uth.gr
http://dx.doi.org/10.1088/0169-5983/46/4/041422


1. Introduction

Static buckling of spherical shells subject to uniform [1] or distributed [2] external pressure
loads has received significant attention in the past in the context of relatively large shells, on
the order of several mm and larger, that obey Hooke’s law and whose bending moments
depend linearly on deviations from the initial curvature. Stability analysis of a uniformly
loaded shell recovers static buckling of an initially spherical shape into an axisymmetric post-
buckling state that is asymmetric with respect to the equatorial plane [3]. The bifurcating
branch is linearly unstable and evolves towards external overpressures that are lower than the
critical load, corresponding to a subcritical bifurcation. Consequently, transition to such static
shapes from the initial spherical configuration, in the above parameter range, requires a
certain level of initial shape deformation, also called imperfection [3]. When a point load
distribution is considered, figure 1, the shell originally acquires a flattened shape in the
vicinity of the applied load and the force–displacement curve exhibits a linear relationship [4].
As the external load increases dimple formation takes place in the region around the point
load and the force–displacement curve exhibits a nonlinear relationship [5]. In both the above
regimes stretching and bending resistance control shell deformation, with bending being
concentrated in the vicinity of the point load in the ‘Reissner’ regime whereas dimple for-
mation at the edges of the crater controls bending resistance in the ‘Pogorelov’ regime.
Furthermore, since bending and stretching stiffness are related via the shell thickness, which,
in most cases, is a known geometric parameter of the shell, obtaining a force displacement
curve, for example via atomic force microscopy (AFM) measurements [6], can provide the
shell shear modulus by concentrating on the linear response part where Reissner’s linear
law holds.

Coated microbubbles, also known as contrast agents, have emerged as powerful contrast
enhancers in medical imaging via ultrasound [7] and as drug and gene delivery vectors [8]
with highly localized impact on selected tissue. Their viscoelastic coating plays a central role
in stabilizing them against dissolution while adding targeting ligands along with an extra oil
layer dissolving the therapeutic agent allows for efficient targeting and drug release [8, 9] near
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Figure 1. Schematic diagram of deformed microbubble corresponding to increasing
external load; (a) spherical shape, (b) flattened around the pole, (c) crater formation.



specific tissue where therapeutic treatment is required. Sonication provides the means to
control the dynamic response of the microbubbles. To this end two major families of coated
microbubbles are normally employed [8], namely those coated by polymeric and phospho-
lipid shells. The former type shells are characterized by larger elasticity modulus hence they
are identified as ‘hard’, whereas the latter are characterized by relatively smaller elasticity
modulus and a thinner shell hence they are identified as ‘soft’ and more deformable shells.
Phospholipid shells are also more amenable to chemical treatment so that they can be attached
to neighboring tissue and consequently are better suited for drug delivery applications [9].

In the context of coated microbubbles the static responses mentioned in the penultimate
paragraph need to be qualified in order to (a) account for the different constitutive laws
describing polymeric [10, 12] or phospholipid [11, 12] shells, (b) account for the fact that the
shell thickness is not easily recovered due to the small size of the microbubble, radius on the
order of a few microns, and (c) take into consideration the added resistance due to the
compressibility of the internal gas. In the present study, the radial and polar components of
the force balance on the shell–liquid interface are coupled with the adiabatic condition
concerning pressure variations of the ideal gas occupying the microbubble interior, in order to
provide the deformed shape and internal pressure of the shell. In addition, different con-
stitutive laws are introduced regarding the mechanical behavior of the shell [13, 14]. In
particular, the strain softening and strain hardening constitutive laws are considered with the
former conforming better with the response of phospholipid shells. In this context, additional
dimensionless parameters are needed concerning the degree of softness of the shell and, more
importantly, concerning the relative stiffness of the shell and the gas compressibility. These
additional parameters are liable to alter the bifurcation diagram regarding the microbubble
response to a uniform external load, depending on the relevant parameter range for different
kinds of shell material. As will be seen in the present study, via numerically produced
bifurcation diagrams, such differences exist between polymeric and phospholipid shells. Such
bifurcation diagrams are available in the literature and exhibit quite a rich structure [15], with
a distinct effect of the assumption pertaining to the enclosed gas, i.e. constant volume versus
constant internal pressure formulation. In fact, transition from one shape family to another can
be used to provide estimates of the shell elastic properties, as was seen in [15] where the
extent of the indentation rim in the post-buckling state was associated with the bending
modulus, and consequently with the elastic modulus of the shell, and in [16] where the
wavenumber of three dimensional wrinkles that develop along the azimuthal direction of the
interface of deformed axisymmetric shells can also be associated with the shell elastic
modulus. In the present study the microbubble is taken to be axisymmetric and undergoing
isothermal variations.

In a different context, an external pressure distribution in the form of a point load can be
used as a first approximation of the microbubble response during AFM measurements. As
was stressed above, analysis of force–displacement curves from AFM measurements, as a
means to obtain estimates of shell elasticity, is normally restricted to its linear part where
Reissner’s linear law holds. Nevertheless, this approach rests upon prior knowledge of the
shell thickness, which is not guaranteed for the kind of shells considered here. Furthermore,
especially for very thin phospholipid shells, the shell thickness may not even be a relevant
parameter. In this case the bending stiffness of the shell may be used as a primary variable,
instead of the shell thickness, along with the stretching stiffness. In this context, there is
ambiguity in the registered response of different types of shells or even similar types of shells
exposed to cantilevers with varying stiffness. In particular, polymeric shells exhibit a linear
force displacement response curve followed by a nonlinear one with the concave part bent
downwards [17, 18]. Prior knowledge of the shell thickness allows for an estimate of shell
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elasticity to be obtained, based on the linear part of the response curve which obeys Reiss-
ner’s law [17]. However, AFM measurements of polymeric shells have also indicated
instabilities and multiplicity in the force–displacement response curves for shells of the same
microbubble and cantilever size and same shell material. In that case [18], variability in the
response curve was also associated with the cantilever stiffness with stiff cantilevers pro-
moting unstable behavior. On the other hand, the response of phospholipid [19], and poly-
electrolyte [20], shells is characterized by a transition to nonlinear behavior with the concave
part bent upwards. In these cases Reissner’s law does not provide a reliable estimate of the
shell elastic properties. Resorting to alternative interpretations such as Hertz theory [19],
originally derived for rigid spheres [2], or adopting a force balance that ignores shell
stretching [20], does not improve the predictive capabilities of the model. Furthermore, in the
above approaches the shell’s Young’s modulus depends on the shell radius.

In the present study a numerical methodology is developed in order to simulate micro-
bubble response to different load distributions and provide a reliable description of the
different regimes in the force–displacement curve. Thus, the shell’s elastic properties can be
estimated upon proper juxtaposition against theoretical models that hold in the same regime,
especially for small displacements. Experimental data can then be analyzed in the same
fashion in order to provide shell parameters. In section 2, the axisymmetric problem for-
mulation is presented including the relevant interfacial force balance and pressure variation
law of the ideal gas inside the shell. In section 3 the numerical methodology that is used for
discretizing the problem is outlined and a benchmark bifurcation diagram is presented
describing the response of a Hookean shell [15]. Moreover, in section 4 results are obtained
for microbubbles coated with a polymeric or a phospholipid shell, while being subject to a
uniform or a point load, and directions towards obtaining reliable estimates based on AFM
measurements are prescribed. Finally, in section 5 the main findings of the present study
are outlined.

Fluid Dyn. Res. 46 (2014) 041422 A Lytra and N Pelekasis

4

Figure 2. Schematic diagram of a deformed coated microbubble subject to a static load.



2. Problem formulation

We wish to study the static response of an axisymmetric coated microbubble, figure 2, subject
to an external pressure distribution. The coating shell is initially taken to be in a stress free
state and the pressure of the enclosed gas equilibrated with the ambient atmospheric pressure,
PA. Shell deformation is effected via the application of an external overpressure distribution.
Taking the shell thickness to be small but finite the interfacial force balance contains in plane
stresses, τ

̿
, but also the shear stress resultant, ⃗q , along the plane that is transverse to the shell/

ambient interface [1, 21, 22]:
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The gas enclosed by the shell is assumed to be an ideal gas undergoing an isothermal
pressure variation subject to the external forcing:

γ= = =γ γP V PV constant, 1 for isothermal variations. (2)G 0 0

In the present study the microbubble is in a zero pre-stress state before the external
overpressure, ΔP is applied. Therefore the initial pressure of the enclosed gas is taken to be
the ambient pressure, P0 =PA; V0 denotes the bubble volume before application of the
external overpressure, ΔP, while V, PG signify the volume and pressure of the enclosed gas at
static equilibrium.

The shear stress resultant is associated with the bending moment stress tensor, which is
linearly related to variations in the local curvature via the bending modulus kB:
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with ms, mφ denoting the principal components of the moment tensor along the tangential and
azimuthal directions, with respect to the generating curve of the axisymmetric shell, and ks the
principal curvature with respect to the tangential direction. Similar relations apply for the
azimuthal components mφ and kφ. Regarding the in plane principal stresses τ τ τ

̿
= ⃗ ⃗ + ⃗ ⃗ϕ φ φee e es s s ,

they are associated with the principal extension ratios, λs, λφ, and the elastic modulus in a way
that is intimately related to the constitutive law determining the mechanical behavior of the
shell material. In the present study three different laws are considered, namely Hooke’s law,
the Mooney–Rivlin and the Skalak law, corresponding to Hooke’s law, strain softening and
strain hardening behavior, respectively [13, 14]. When isotropic loading is considered, λs= λφ,
the in-plane stresses read for the above three cases as:

τ λ=
+
−

−( )G
v

v
G v a

1

1
1 , : surface shear modulus : surface Poisson ratio (4 )H H s

s

H2
s
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with GH, GMR, GSK=Gh denoting the surface shell shear modulus, G the standard shear
modulus and h the shell thickness; parameters b, C are measures of the shell strain softening
or strain hardening behavior. The above set of equations is complemented by the symmetry
conditions at the two poles

ξ
θ

ξ
θ ξ θ ξ π= = = = = =( ) ( )dr

d

d

d
0, 0 0, 1 (5)

2

2

before it is solved for the radial, r, and polar, θ, coordinates of the deformed state and the
internal pressure. In the following ξ denotes a Lagrangian variable that signifies specific
particles at the shell interface before and after deformation; ξ= 0, 1 correspond to the north
and south poles of the microbubble. In addition, three different load distributions are
considered in the present study:

Δ ξ =( )P P acorresponding to a uniform distribution (6 )EXT

Δ δ ξ= ( )P P bcorresponding to a point load (6 )EXT

where δ denotes a delta function: δ ξ = ξ
ξ

≠
={( ) 0, 0

1, 0
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π θ
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2 sin
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sin

sin
, (6 )

c c
2

0
2

2

2

0.5

load distribution following Hertz [2].
When the case due to a point load is examined, the center of mass of the microbubble in

the direction of the axis of symmetry, zc, is set to zero in order to avoid a net translation of the
shell. In a realistic situation, e.g. when AFM measurements are simulated, the solution
obtained in this fashion focuses on deformations in the vicinity of the point load while
ignoring the details of the deformation at the opposite end of the shell that rests on a solid
substrate.

∰= ⃗ ⋅ ⃗ =e dV dz r 0 (6 )c
V

Z

When a load distribution is applied (equation (6c)), instead of PEXT the total force is
known and the angle of contact between the cantilever and the microbubble, θc, is treated as
an additional unknown that arises as part of the solution of the full nonlinear problem; R0 is
the initial stress free radius of the microbubble. This particular load distribution was obtained
by Hertz in his study of two contacting rigid spheres. In the first two cases PEXT is treated as
known, while the total force, F, is calculated as part of the post-processing of the solution.

The energy of the deformed configuration is an important indicator that is employed for
the characterization of different solution families. In the deformed states under examination
the energy consists of three different components. The stretching energy is associated with
changes in the principal directions of the rate of strain tensor on the shell interface and, for a
shell that obeys Hooke’s law, it assumes the form,
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where ei denotes the principal strain components, A0 the shell area in the undeformed
configuration, υ the Poisson ratio and E the shell Young’s modulus. The latter is related to the
shear modulus via the shell response at small displacements for the above constitutive laws:
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whereas the energy due to internal gas compressibility and the resulting compression assumes
the form:

∫
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The latter relation is similar to the one employed by Lipowsky et al [23] for vesicles
containing liquid solutions, with the understanding that in the present study the initial bubble
pressure P0 is equal to the ambient pressure PA before application of the overpressure. Since
the gas inside the microbubble is compressible, the respective energy variation due to volume
changes is determined by the amount by which the internal pressure rises, PG−P0, as a result
of compression. Resistance to compression constitutes an additional stiffness of the micro-
bubble that affects the static response as the external overpressure increases significantly.

The problem formulation is rendered dimensionless by introducing the characteristic
length scale, R0. Then the solution depends mainly on two dimensionless parameters,

χ χ
χ˜ = ˜ = ≡k

k

R
P

P R
Gh a, , 3 ; (8 )b

b
A

A

0
2

0

χ signifies the area dilatation modulus of the shell, which is introduced in order to eliminate
the shell thickness from the formulation. In this fashion, in cases for which a shell thickness is
not easily defined, such as phospholipid monolayer or bilayer shells [24], the bending
resistance becomes an independent elasticity parameter [25]. For polymeric shells that
normally have thicker coatings, bending resistance is related to the elastic modulus and the
shell thickness. Hence,

⎛
⎝⎜

⎞
⎠⎟=

−
→ ˜ =
=

( )
k

Gh

v
k

h

R
b

3

12 1 3
(8 )b

v

b

3

2

0.5

0

2

and the ratio between the shell thickness and the microbubble radius emerges as an
independent dimensionless number. It should be stressed that the above two parameters,
˜ ˜k P, ,b A denote the relative importance among the three resistances to shell deformation,
namely the stretching and bending stiffness of the shell as well as gas compressibility. Finally,
an additional dimensionless parameter can be defined, Δ Δ χ˜ =P PR( ) /0 , as a measure of the
intensity of the external disturbance.
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3. Numerical solution—validation

The normal and tangential components of the force balance, equation (1), along with the
isothermal law describing pressure variations inside the shell (equation (2)), are discretized
via the finite element method in order to provide the radial and polar coordinates of the
deformed shell. Owing to axisymmetry only the generating curve of the shell surface requires
discretization, rendering the numerical problem one dimensional. The equation that fixes the
center of mass at the origin of the axis of symmetry, equation (6d), is introduced in place of
the tangential force balance at the equator in order to avoid multiple solutions that will arise
due to the translational symmetry of the problem formulation. Integration by parts of the
integral equations that arise in the process of the finite element discretization affords efficient
imposition of the boundary conditions at the two poles, equation (5), that enforce axisym-
metry upon the numerical solution.

For example, the normal component of the force balance is recast in spherical coordinates
and dimensionless form as:

⎜ ⎟
⎛
⎝⎜

⎡
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⎛
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− = ˜ =ϕ ϕ ϕ( )( )P P k k

k d

ds

d

ds

d

d
m m P r( ) , with sin (9)G A s s

b
s

At equilibrium the externally applied overpressure is balanced by the resistances to
compression, elongation and bending signified by the three terms in parenthesis in the
above equation.

As can also be gleaned from the above equation, the normal force balance involves
second derivatives of the bending moments, ms, which in their turn involve calculation of the
principal curvatures, ks, kφ. Since the latter also involve evaluation of the second derivatives
of the shell coordinates, r, θ, it follows that fourth order derivatives enter the numerical
solution. Hence, the finite element methodology with the B-cubic splines, Bi(ξ), as basis
functions is employed in order to reduce the smoothness requirements in the weak for-
mulation that arises [26]. Indeed, upon integrating by parts twice and applying the boundary
conditions at the two poles, equation (5), the weak formulation of equation (9) becomes:
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where N denotes the number of elements of the finite element discretization. The tangential
component of the force balance is discretized in a similar fashion whereas the isothermal ideal
gas law and the positioning of the center of mass are directly applied in their integral
dimensionless form:

∫ θ θ
ξ

ξ˜ − ˜ =P P r
d

d
a

1

2
sin d 0 (11 )A G

0

1
3
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The entire set of equations is treated in the residual form:
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with J denoting the Jacobian matrix. Due to the complexity of the integral forms in equation
(10) numerical differentiation was selected for the evaluation of the entries of the Jacobian
matrix by calculating the residuals at a fixed increment of xj, Δxj= 10

−8, while maintaining the
rest of the unknowns at a fixed level. In this fashion, convergence was afforded, with a
varying convergence rate depending on the degree of excursion of the solution sought after
from the initial guess, when simple continuation is performed [27]. Once a converged solution
is obtained the eigenvalues of the Jacobian matrix are calculated and the stability of the
deformed shape is investigated. Standard BLAS and LAPACK routines are employed for the
inversion and eigenvalue calculation of the Jacobian matrix, which is treated as a full matrix.
The stability of a certain branch is determined by the number of negative eigenvalues
corresponding to the converged solutions obtained for varying external overpressure. The
eigenvectors corresponding to the unstable eigenvalues are calculated so that an initial guess
is generated, which, for a suitable disturbance ε on the basic spherical configuration, will
provide a large enough geometric imperfection that will direct Newton’s iterations towards
the emerging subcritical branch [27].

The above methodology was implemented in order to recover bifurcation diagrams
available in the literature, for spherical shells that obey Hooke’s law. In particular, the case for
constant internal pressure reported in [15] is calculated for a shell with radius of 2 μm and,
thickness h= 0.2 μm, shear modulus G = 88 × 106 Pa and Poisson ratio ν = 0.5; the corre-

sponding dimensionless parameter values are ˜ = × ˜ =− −P k4 10 , 10A b
3 3. It should be noted

that in the present study the isothermal ideal gas law is employed for capturing pressure
variations of the enclosed gas as opposed to fixing the volume or the internal pressure as in
[15]. Furthermore, in [15] the shell shapes and stability of the emerging solution branches
were obtained via minimization of the total energy as opposed to the solution of the force
balance followed by eigenvalue analysis.

Figure 3 illustrates the evolution of the different solution branches in the plane defined by
the dimensionless external overpressure, ΔP̃, and the relative volume change between the
deformed and the initial state of the shell, V/V0; a uniform mesh of 200 and 400 B-cubic
splines was used for the discretization of the shell surface and agreement was verified
between the numerical solution obtained in the present study and in [15]. The numerically
obtained diagram confirms that the asymmetric branch emerges first as the dominant
instability for ΔP = 3.2 × 106 Pa, that is, roughly, 0.92 of the theoretical value
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(14)Cr

2
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2

obtained from linear stability analysis on the spherical configuration. This is in direct
agreement with the critical value taken from a similar diagram in [15]. Furthermore, the
secondary bifurcation leading to a symmetric solution family was also recovered. Agreement
between the two approaches is justified, despite the different treatment of the internal pressure
variation adopted herein, due to the negligible resistance to compression of the microbubble
indicated by the very small value of the dimensionless pressure, ˜ = × −P 4 10A

3.
The asymmetric branch is linearly unstable with one negative eigenvalue whereas the

symmetric branch that follows is characterized by two negative eigenvalues. Both branches
evolve subcritically and they require imposition of a geometric disturbance of a certain
amplitude, in the form of the eigenvector provided by stability analysis as was explained
above, on the base spherical shape in order to perform parametric continuation on them. The
evolution of both branches was followed for a wide range of external overpressures, also in
agreement with the above study, and the minimum external overpressure for nonlinear
transition to an asymmetric shape to be possible, starting from the spherical configuration,
was recovered. It should be noted that the evolution of shapes from the spherical config-
uration along the asymmetric solution family, exhibits a gradual transition into flattened
shapes in the vicinity of the pole followed by dimple formation, see also figure 3, in a fashion
that is similar to the response to a point load, shown in the next section. The symmetric
solution family also progressively exhibits pronounced dimple formation in the region around
the two poles.

4. Results and discussion

Based on the above methodology, an extensive numerical investigation was carried out of the
static response of polymeric and phospholipid shells subject to external uniform and point
loads. These two types of shells are distinguished by the fact that the former are much stiffer
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Figure 3. Benchmark calculation of (a) bifurcation diagram and (b) total energy for the
case with thickness h = 0.2 μm, shear modulus G= 88 × 106 Pa, Poisson ratio ν = 0.5 and
R0 = 2 μm. Continuous, dashed and dotted lines correspond to the spherical
configuration, asymmetric and symmetric solution families. The shapes shown are
obtained at different locations of the asymmetric solution family.



in terms of both stretching and bending elasticities [11, 12]. Furthermore, they are mostly
characterized by Hooke’s law [10, 12], whereas phospholipid shells are strain softening for
relatively large deformations [11, 12]. In the present study we first examine the response of
both types of shells to a uniform external overpressure while using elastic properties that are
available from the literature. Next we present results regarding the response of coated
microbubbles to a point load distribution and comment on the possibility to obtain estimates
of the shell elastic properties based on details of the force–displacement curve. Most of the
results presented in the sections below were obtained using 400 elements along the generating
curve of the axisymmetric shell, and verified via mesh refinement with 600 elements.

4.1. Uniform external load-bifurcation diagrams

The static response of a polymeric and a phospholipid shell is studied via simple parametric
continuation in the parameter space defined by the uniform external overpressure, ΔP̃, and
relative volume change, V/V0. To first approximation both types of shells are taken to obey
Hooke’s law; the Poisson ratio ν is set to 0.5.

In the former case Bisphere is used as the contrast agent coated by a polymeric shell, with
indicative elastic constants obtained from the literature [17],

= = =G a h v970 MP , 39 nm, 0.42; R0 = 2 μm. These parameter values correspond to
area dilatation modulus and bending stiffness on the order of χ= 3,Gh= 113 Nm−1 and
kb = 1.7 × 10

−14 Nm and consequently the dimensionless parameters governing the micro-

bubble’s mechanical response are ˜ = × ˜ = ×− −P k2 10 , 0.25 10A b
3 4. As can be gleaned from

figure 4, in this case the bifurcation diagram is modified in comparison with figure 3 in the
sense that the symmetric solution branch emerges as the primary instability of the basic
spherical configuration. Repeating both calculations ignoring pressure changes in the
microbubble does not result in any significant changes of the bifurcation diagram. In both
cases the resistance to compression due to gas compressibility is small, ˜ ≪P 1,A whereas in
the case depicted in figure 4 the resistance to stretching dominates over bending resistance to

a greater extent, smaller k̃b. Hence, the critical overpressure is lower, the volume change at
criticality smaller and the results of linear theory closer to the numerically calculated one. The
critical external overpressure is almost identical to the prediction of linear theory,
ΔPCr≈ 0.83MPa, and the dominant eigenmode is the 14th Legendre mode, P14, as can be
verified by performing Fourier analysis of the numerically calculated dominant eigenvector at
the bifurcation point. The emerging solution branch evolves subcritically, it is identified by a
single negative eigenvalue and is characterized by shapes that exhibit a progressively more
pronounced dimple. Further increase of the external overpressure reveals a second unstable
eigenvalue, on the base spherical shape, whose corresponding eigenvector is characterized by
an odd Legendre mode, P13. This indicates the onset of an asymmetric solution branch that
also emerges subcritically with two negative eigenvalues. Hence, the change in the dimen-
sionless bending resistance in the cases portrayed in figures 3 and 4 results in an exchange in
the order of appearance of the first two dominant eigenmodes. In this case it can be argued
that for given amount of compression, V/V0, as bending resistance decreases bending becomes
energetically favorable over stretching and the shell first exhibits two symmetric dimples as
opposed to the one in figure 3. Figures 3(b) and 4(b) illustrate the evolution of the total energy
pertaining to each one of the solution branches verifying the above assertion. The evolution of
the asymmetric branch is captured at its initial stages. However, as the external overpressure
decreases beyond a certain value, shapes belonging to the symmetric branch are obtained and
the number of negative eigenvalues is reduced to one. It should also be stressed that as the
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symmetric branch evolves for smaller external overpressures, a secondary bifurcation point
appears whose corresponding eigenvector is dominated by P13, it is characterized by
asymmetric shapes and possesses two negative eigenvalues, much like the asymmetric branch
evolving from the main solution family with spherical shapes. Consequently, for the para-
meter range pertaining to Bisphere the bifurcation diagram is quite different from the one
depicted in figure 3. An exchange in the sequence of the bifurcation points has occurred that
favors the onset of symmetric buckled shapes while the asymmetric branch is conjectured to
connect the symmetric one with the base solution family of spherical shapes. Figure 4(c),
which zooms in the vicinity of the bifurcation points, is an attempt to illustrate this behavior.

An extensive parametric study was performed in order to capture the exchange of sta-
bility between the two solution families. Using the parameter set from the benchmark study in

figure 3 and gradually reducing the dimensionless bending resistance, k̃b, the distance between
the two bifurcation points corresponding to the onset of the asymmetric and symmetric
branches tends to decrease, table 1, until they overlap with the latter emerging first. Clearly as

k̃b decreases a threshold value, ˜ < −k 10b
6, is reached where the two bifurcation points coalesce
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Figure 4. (a) Bifurcation diagram and (b) total energy for a Bisphere microbubble with
G= 970MPa, h= 39 nm, ν = 0.42 and R0 = 2.6 μm. Continuous and dashed lines
correspond to the spherical configuration and symmetric solution families. The shapes
shown are obtained at different locations of the symmetric solution family. (c) Zoom in
on the bifurcation diagram in the vicinity of the bifurcation points. Black squares and
triangles indicate members of the asymmetric and symmetric branches stemming from
the main spherical solution family. Open squares indicate members of the asymmetric
solution family that bifurcates from the symmetric branch.



and the structure of the bifurcation diagram is significantly altered from this threshold value
onwards. Capturing the detailed structure of the emerging bifurcation diagram constitutes a
difficult task since all branches evolve very near the spherical solution family, figure 4(c), and
requires special numerical handling. This is not within the scope of the present study and is
left for future investigation.

In order to study the response of phospholipid shells to a uniform load, e.g. BR14, the
above calculations are repeated adopting from the literature [28, 29] much smaller values for

the stretching and bending stiffness, χ = = = ×− −Gh k3 0.11 N m , 2.8 10 N mb
1 15 , with

corresponding dimensionless parameter values, ˜ = ˜ =P k2.27, 0.004b ; R0 = 2.6 μm. In this
case both bending stiffness and the stiffness due to gas compressibility are important. It
should also be noted that for this type of microbubble the shell thickness is no longer a
relevant variable, these are lipid monolayer shells, and the bending stiffness is used as the
fundamental property along with the area dilatation modulus. Furthermore, the resistance to
compression is of equal importance as the stretching and bending resistances and conse-
quently ignoring it provides a considerably different response pattern, see figures 5(a) and (b).

The critical overpressure required for buckling to take place in this case is significantly
larger when the gas compressibility is taken into consideration, see also figure 5. Since the
dimensionless bending stiffness is much larger in this case, in comparison with those illu-
strated in figures 4 and 5, static buckling takes place at a critical overpressure that differs
significantly from the prediction of linear theory. This is better understood in terms of the
elastic energy distribution among stretching, bending and gas compressibility. Due to the
large relative bending stiffness a large amount of volume compression is required before
bending becomes energetically favorable over stretching so that buckling takes place, see also
figure 5(b). The two solution families, corresponding to the asymmetric and symmetric
unstable eigenvector, evolve subcritically towards smaller external overpressures with the
asymmetric solution family being the dominant one, figure 5(a), being energetically favored
over the symmetric branch, see also figure 5(b), and possessing one negative eigenvalue
versus two for the symmetric branch. The shape sequence along this branch follows the

Fluid Dyn. Res. 46 (2014) 041422 A Lytra and N Pelekasis

13

Figure 5. (a) Bifurcation diagram and (b) total energy for a BR14 microbubble with
χ = 3Gh= 0.11 Nm−1, kb = 2.8 × 10

−15 Nm and R0 = 2.6 μm. Continuous, dashed and
dotted lines correspond to the spherical configuration, asymmetric and symmetric
solution families. Families that evolve towards larger external overpressures (smaller
total energies) correspond to isothermal compression whereas the ones that evolve
towards smaller values (larger total energies) correspond to constant internal pressure
calculations.



schematic presented in figures 1(a)–(c), i.e. the compressed spherical shape becomes flattened
at the onset of the solution family while gradually developing a more pronounced dimple
around one of the poles. As will be seen in the next subsection, this is a very similar sequence
of deformed shapes to the one obtained for the application of a point load on one of the two
poles of the microbubble. In particular, transition from the flattened shapes to dimple for-
mation as well as the details of dimple formation itself, contain useful information for esti-
mating the elastic properties of the shell [6, 15, 17, 18].

It should also be stressed that continuation of both branches as the external overpressure
decreases does not exhibit the same response as in the case for which gas compressibility is
not accounted for, figure 5. In the latter case the microbubble is significantly compressed in
this process. Clearly this cannot be the case when the resistance to compression is taken into
consideration and the emerging branches follow a different path. To this end a parametric
study was conducted using the parameter values employed in figure 3 as starting point and
gradually increasing the dimensionless initial internal pressure, P̃A. The bifurcation pattern
illustrated in figure 3 is recovered, with the asymmetric branch being the dominant instability,
until large compression rates are achieved, V/V0 < 1; see also figures 6(a)–(c). It was a
recurring theme in this computation that numerical solution became progressively more
tedious until, beyond a certain threshold level of compression, a solution could not be
obtained. The threshold value in V/V0 for this critical behavior to be obtained systematically
increased as the resistance to compressibility increased with increasing P̃A, indicating the fact
that compressed states become less favorable. Such numerical difficulties were reported
elsewhere in the literature as well [15] for the same type of computation and similar parameter
range. In the latter study it was shown that such difficulties arise due to the fact that the shell
exhibits regions where opposite sides are in contact for both the asymmetric and symmetric
branches. Such shapes appear in order to accommodate higher compression levels and are
obtained as the external overpressure is increased away from the problematic region. In the
present study the model equations employed for the shell do not allow for such shapes to be
captured hence the simulations are stopped beyond a certain compression level, see
figures 3(a), 5(a), 6(a)–(c). Further examination of this part of the bifurcation diagram was not
pursued in the present study since it is expected that three dimensional wrinkles will arise [10]
before the onset of shapes exhibiting contact of opposite sides of the shell.

The effect of the constitutive law on the static response to a uniform external load was
examined for contrast agent BR14 assuming a strain softening behavior, setting b parameter
to zero, and it was seen that the bifurcation diagram exhibited similar structure as in figure 4
with the symmetric branch becoming the primary instability, figure 7, despite the small value

of k̃b. This type of response is attributed to the strain softening nature of the shell, which
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Table 1. Evolution of the numerically evaluated bifurcation point pertaining to the
asymmetric and symmetric branches stemming from the spherical solution family, as
the relative bending resistance decreases.

˜ = × −P 4 10 3

k̃b
−10 3 −10 4 −10 5 −10 6 −10 7

ΔP̃cr asym-
metric mode

1.280 × 10−1 4.040 × 10−2 1.272 × 10−2 4.020 × 10−3 1.273 × 10−3

ΔP̃cr sym-
metric mode

1.348 × 10−1 4.080 × 10−2 1.276 × 10−2 4.028 × 10−3 1.272 × 10−3



becomes harder during compression. This, essentially, amounts to the shell exhibiting a larger

area dilatation modulus χ than its nominal value used in evaluating k̃b. As a result the effective
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Figure 6. Bifurcation diagrams for microbubbles with the same dimensionless bending
modulus and different resistance to gas compression.

Figure 7. Bifurcation diagram for a BR14 microbubble obeying the Mooney–Rivlin
constitutive law. The black square and triangle denote the onset of the symmetric and
asymmetric branches, respectively. The empty square denotes the onset of an
asymmetric branch off the symmetric solution family.



dimensionless bending resistance k̃b Eff, is much smaller than k̃b and dimple formation is

favoured over stretching of the shell, which explains the onset of symmetric shapes. It should
also be stressed that the structure of the bifurcation diagram, including the asymmetric branch
off the spherical solution family and the secondary asymmetric bifurcation from the sym-
metric branch, is very similar to the case shown in figures 4(a)–(c) where also the symmetric
mode emerges before the asymmetric branch, figure 7.

4.2. Point load-parameter estimation

In order to assess the response to a point load distribution we examine the response of a
coated microbubble with elastic properties χ = = = ×− −Gh k3 2.4 N m , 8 10 N mb

1 17 and

corresponding dimensionless parameters ˜ = ˜ = × −P k0.06, 1.5 10b
5; R0 = 1.5 μm.

Figure 8(a) illustrates the response of the microbubble in the form of a force deformation
curve. The deformation, Δ, is indicatively calculated at the pole where the point load is
applied and the force, F, is the integral of the external load, point load in this case, over the
deformed shell surface. The response curve is characterized by three distinct regimes with
specific features each. As can be gleaned upon comparing the schematics from figure 1, the
shapes corresponding to the asymmetric solution families in figures 3(a) and 5(a) and the
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Figure 8. (a) Force–displacement curve and (b) energy distribution for a phospholipid
microbubble subject to a point load; χ= 3Gh= 2.4 Nm−1, kb = 8 × 10

−17 Nm and
R0 = 1.5 μm. Dark squares denote points obtained with the model that includes
isothermal compression. Open squares denote points obtained with the model that
assumes constant internal pressure. (c) Numerically obtained shapes along the response
curve that includes the effect of compressibility at a normalized deformation of 0.01
(solid line), 0.05 (dashed line) and 0.2 (dashed-dot line).



shapes from figure 8(c), all conform to the pattern of an initially spherical configuration
becoming progressively flatter at the pole until dimple formation takes place.

At very small deformations the response curve exhibits a linear regime that is char-
acterized by flattened shapes around the location of the point load, figure 8(a): this is the
classic Reissner regime where a linear relationship exists [30] in the form

χ Δ=
− ˜( )

F
v k

4

3 3 1
(15)

b
2

with F, Δ dimensional. Elastic energy in terms of bending and stretching determines this type
of shape with bending being evenly distributed along the flattened part of the shell,
figure 8(c). Owing to the small bending stiffness a transition is observed for quite small
deformations in the response curve, to a nonlinear force deformation regime where bending is
mainly restricted to the two dimple edges, identifying the rim of the dimple that is formed in
the vicinity of the point load, see the shape from figure 8(c) pertaining to this regime.
Furthermore, this regime is characterized by a nonlinear force deformation law [5]

χ
Δ=

− ˜( )
F

v k k

R

36 1
(16)

b b
2

0

and will be referred to as Pogorelov regime. Typically, Reissner’s law is employed for
providing estimates of the shell elastic modulus based on AFM measurements [6, 17], but this
process relies upon previous knowledge of the shell thickness. This is normally easily
recovered for relatively large shells but in the case of coated microbubbles, especially
phospholipids, this may not be the case. Hence, it will be useful to combine the two regimes
in order to obtain an estimate of the shell thickness and area dilatation modulus at the same
time. As the applied point load further increases the volume of the microbubble is compressed
to a non-negligible extent, the internal pressure increases and the actual resistance to
compression increases as well. As a result the part of the energy stored in the form of gas
compression assumes a more important role in the mechanics of deformation, figure 8(b), and
this is also reflected in the force deformation curve that now is curved upwards, figure 8(a),
indicating this additional stiffness component.

The response pattern registered in figure 8 persists for a wide range of elastic parameters,
corresponding to polymeric or phospholipid shells, with the understanding that certain
polymeric shells, for which normally resistance to compression is negligible, do not always
exhibit the part of the curve that is curved upwards. In fact, on certain occasions [18] this part
is superceded by a plateau upon which small scale variations of the measured force appear,
possibly as a result of an instability, or even multiplicity of responses is observed. Experi-
mental observations [18] associate this response with an increase in the cantilever stiffness or
to a 3D buckling event of the interrogated microbubble. In the first case the cantilever–mi-
crobubble interaction should be examined more carefully in order to provide load distribu-
tions, especially for flat cantilevers, that are closer to reality. On the other hand, for 3D
instabilities to be examined, the numerical methodology has to be extended in order to capture
non-axisymmetric shells. In an effort to obtain a simple correction to the response curve for a
point load distribution, the response of a coated microbubble is studied subject to the Hertz
distribution, equation (6c). In this case the total applied force is known and the angle of
contact θc is part of the numerical solution. Thus, two independent solutions are obtained,
figures 9(a), (b), with the first one corresponding exactly to the solution for a point load, the
angle of contact θc is vanishingly small, while the other one recovers the spherical shape with
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a gradually increasing angle of contact, figure 9(b). These two solutions correspond to the two
extremes of the cantilever and the microbubble controlling the stiffness of the system. Clearly
a better model of the cantilever–microbubble interaction is required if the issue of multiplicity
is to be addressed in the microbubble response, and is left to a future study.

In a similar context, it has been observed experimentally [19] that phospholipid shells do
not always follow Reissner’s law at small deformations. This type of behavior is normally
observed at very small forces, on the order of several nN, in which case a nonlinear response
curve is obtained even for very small deformations. In this case it is possible that inter-
molecular forces dominate the microbubble response, associated with attraction or repulsion
between the shell material and the cantilever. In either case a nonlinear response curve is
expected [3] corresponding to the dominant effect of surface energy. In such a situation
transition from Reissner to Pogorelov type response in the force–deformation curve may not
be useful in estimating shell parameters. Rather the second transition, the one associated with
the curved upwards part of the response curve, corresponding to the transition from bending
dominated behavior, as in the Pogorelov regime, to gas compressibility control, as in the final
part of the response curve, can be used in order to obtain useful estimates pertaining to the
elastic behavior of the shell.

5. Conclusions

The static response of a coated microbubble subject to different external load distributions
was investigated numerically. Comparison against theoretical predictions and benchmark
parametric studies were conducted that accurately reproduced available data from the
literature.

Bifurcation diagrams were constructed for contrast agents with polymeric, Bisphere,
and phospholipid coatings, BR14. Parametric continuation was performed in the parameter

space defined by the ˜ ˜k P, ,b A parameters measuring the relative importance of bending and
compression stiffness with respect to stretching. In the case of Bisphere the dimensionless
bending stiffness is much smaller than the one used in the benchmark study causing an
exchange in the sequence of bifurcations on the spherical solution family leading to deformed
shapes, with the symmetric branch taking precedence as the dominant instability over the
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Figure 9. (a) Force–deformation curve and (b) contact angle, as a function of the
external load when a Hertzian load distribution is considered; G= 970MPa, h = 39 nm,
ν = 0.42 and R0 = 2.6 μm.



asymmetric one while both branches evolve subcritically. This is conjectured to be the result
of a mode coalescence event as the two bifurcation points coincide. In the parameter range
beyond this coalescence the bifurcation diagram changes. The asymmetric branch evolves
over a small interval of external overpressures and is conjectured to terminate on the sym-
metric branch in the form of an additional bifurcation point that appears on the symmetric
branch and is also asymmetric in nature. The relative resistance to compression is very small
in this case and consequently allowing for isothermal pressure variations inside the micro-
bubble bears no significance on the static response.

Bifurcation diagrams pertaining to BR14 were also constructed and they are character-
ized by the large resistance to compression. The bifurcation structure is similar to the one
obtained in the benchmark case with the asymmetric and symmetric branches terminating at
larger final to initial volume ratios, V/V0, indicating the resistance of the shell to additional
compression. Both branches are expected to be complemented by a solution family exhibiting
contact between opposite ends, in the manner obtained elsewhere [15] with the new solution
family turning to larger external overpressures while achieving smaller V/V0 ratios, but this
transition will take place at smaller threshold compression levels, larger V/V0, as the relative
resistance to compression, P̃A, increases. Such a transition is, however, not expected to persist
in the presence of three dimensional disturbances. It should also be stressed that accounting
for nonlinearity in the constitutive law, i.e. introducing strain softening behavior to BR14,
leads to an increased effective stretching resistance during compression that amounts to a

reduction in the relative bending resistance, k̃ ,b thus forcing the symmetric solution family to
supercede the asymmetric branch. The structure of the bifurcation diagram is similar to the
one exhibited by Bisphere where also the symmetric branch was seen to bifurcate first off the
main spherical solution family.

The response of a coated microbubble to a point force was also investigated as a first step
to simulate AFM measurements. The two pressure models pertaining to constant internal
pressure and isothermal pressure variation were compared and the response was almost
identical for small deformations, but different at large deformations. The pressure model
which considers isothermal variations of the internal pressure requires higher forces for the
same deformation than the constant pressure model, leading to a curved upwards response
curve. Both models exhibit a first linear response identified as the Reissner regime followed
by a nonlinear curved downwards part identified as Pogorelov’s regime. Asymptotic fitting of
the measured static response in these two regimes constitutes a useful tool for estimation of
the area dilatation and bending modulus. Extensive data analysis is underway in order to
validate this approach and provide a useful interpretation for deviations from this pattern
reported in AFM measurements of phospholipid and polymeric shells at very small and large
deformations, respectively.
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