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The static response of coated microbubbles is investigated with a novel approach employed for model-
ing contact between a microbubble and the cantilever of an atomic force microscope. Elastic tensions
and moments are described via appropriate constitutive laws. The encapsulated gas is assumed to
undergo isothermal variations. Due to the hydrophilic nature of the cantilever, an ultrathin aque-
ous film is formed, which transfers the force onto the shell. An interaction potential describes the
local pressure applied on the shell. The problem is solved in axisymmetric form with the finite ele-
ment method. The response is governed by the dimensionless bending, k̂b = kb/

(
χR2

0

)
, pressure,

P̂A = (PAR0) /χ, and interaction potential, Ŵ = w0/χ. Hard polymeric shells have negligible resis-
tance to gas compression, while for the softer lipid shells gas compressibility is comparable with
shell elasticity. As the external force increases, numerical simulations reveal that the force versus
deformation (f vs d) curve of polymeric shells exhibits a transition from the linear O(d) (Reissner)
regime, marked by flattened shapes around the contact region, to a non-linear O(d1/2) (Pogorelov)
regime dominated by shapes exhibiting crater formation due to buckling. When lipid shells are tested,
buckling is bypassed as the external force increases and flattened shapes prevail in an initially linear
f vs d curve. Transition to a curved upwards regime is observed as the force increases, where gas
compression and area dilatation form the dominant balance providing a nonlinear regime with an
O(d3) dependence. Asymptotic analysis recovers the above patterns and facilitates estimation of the
shell mechanical properties. Published by AIP Publishing. https://doi.org/10.1063/1.5011175

I. INTRODUCTION

Coated microbubbles (MBs), also known as contrast
agents, have emerged as powerful contrast enhancers in med-
ical imaging via ultrasound1,2 and as drug delivery vectors3,4

with highly localized impact on selected tissue. Their vis-
coelastic coating plays a central role in stabilizing them against
dissolution, while adding targeting ligands along with an extra
oil layer dissolving the therapeutic agent allows for efficient
targeting and drug release3–5 near specific tissue where ther-
apeutic treatment is required. Coated MBs have an initial
diameter from 1 to 10 µm, and the shell coating is an elastic bio-
material with thickness 5-50 nm. The core contains a gas phase,
usually nitrogen, CO2, or perfluorochemicals6 which produces
the local density gradient that is vital for the ultrasound. Two
major families of coated microbubbles are normally employed,
namely, those coated by polymeric and lipid shells. The former
type shells are characterized by larger area dilatation modu-
lus; hence, they are identified as “hard,” whereas the latter
are characterized by, relatively, smaller area dilatation; hence,
they are identified as “soft” and more deformable shells. It
is not only their small size that makes microbubbles suit-
able for the visualization of very small blood capillaries but
also their ability to oscillate nonlinearly in response to ultra-
sound waves near the walls of small capillaries that mostly

a)Author to whom correspondence should be addressed: pel@uth.gr

behave as linear scatterers.7–9 As a result, both numerical9

and experimental studies6,10 suggest that a strong backscat-
ter signal is generated during an ultrasound measurement
that is strongly dependent on the shell properties (elasticity,
thickness, material non-linearity, viscosity, etc.). Therefore,
accurate estimation of their elastic properties, namely, Young’s
modulus (E) and bending modulus (kb), is a key to design and
optimize their response in the vascular bed.11,12 This is typi-
cally made possible via accurate estimation of their resonance
frequencies pertaining to volume pulsation,8–11 particularly
so for freely circulating MBs. In a similar fashion, the mod-
ulation of the resonance frequency of trapped microbubbles,
due to their adhesion on pathogenic tissue, allows for iden-
tification of the latter during in vivo measurements as well
as optimized visualization and localized delivery of the drug
payload.3,13

Estimation of the viscoelastic properties of lipid shells,
in particular, via acoustic measurements suffers from inher-
ent complications14,15 due to the strain softening nature of
the shell.9,16,17 More specifically, lipid monolayer shells tend
to become softer during expansion due to the reduction in
their surface density.16,18,19 This tendency is reflected in the
preferential excursion from equilibrium that is often observed
in the expansion phase of their pulsation16,18 in response to
an acoustic disturbance. However, lipid shells also exhibit
the opposite tendency when subjected to an acoustic distur-
bance, namely, they tend to pulsate mainly at compression,
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“compression only behavior,”14,15 that is typically associated
with shells that become softer during compression.9 The lat-
ter behavior is also associated with deformation and shell
buckling;14,15 hence, its accurate description involves a large
number of shell properties which explains the lack of repro-
ducibility in estimates of shell elasticity based on acoustic
measurements.

Static measurements on the other hand involve a smaller
number of parameters that are easier to control. To this end,
atomic force microscopy (afm) experiments have been proven
to be a reliable and successful tool for the characterization
of the elastic properties for both types of coatings, in the
form of force-deformation curves (to be referred to as f-d
henceforth for brevity). In particular, Lulevich et al.20 mea-
sured Young’s modulus of hollow polyelectrolyte multilayered
microcapsules of relatively small shell thickness using (afm).
The capsules were seen to behave like elastomers with E on
the order of 1-100 MPa and exhibited a nonlinear response,
f ∼ d3, especially at relatively large deformations. The lat-
ter value was estimated by fitting the experimental f-d curve,
obtained mainly at large deformations, against a model that
takes shell stretching in the bulk of the shell and away from the
contact region as the dominant recipient of the external force.
This approach was similar to the one adopted by Shanahan21

in an earlier study aiming at obtaining estimates of the adhe-
sion energy of elastic membranes. In an ensuing study, Elsner
et al.22 studied similar shells, albeit with smaller relative thick-
ness with respect to the shell radius, and found a predominantly
linear response, f ∼ d, for deformations on the order of shell
thickness, also known as Reissner23 regime, followed by a non-
linear response curve, f∼ d1/2, corresponding to buckled shells
in the region where the force from the cantilever is applied, as
first pointed out by Pogorelov.24 Simulations using the Abaqus
software package verified this pattern. As will also be seen in
the present study, the latter two regimes signify response pat-
terns with stretching and bending resistance balancing each
other in the contact region and in a transition region that joins
the contact region with the bulk of the shell, respectively. Fit-
ting the f-d curve against Reissner’s23 linear law obtained a
significantly larger Young’s modulus, on the order of 300 MPa.
It should be pointed out that in both the experimental studies
that were mentioned earlier the shell thickness was treated as
a known geometric parameter of the shell, and this facilitates
parameter estimation significantly when it is unambiguously
defined.

However, when coated microbubbles are interrogated,
statically or acoustically, the shell thickness is not a priori
known and more information is required in order to obtain reli-
able estimates of shell elasticity. In particular, Glynos et al.25

measured Young’s modulus of MBs covered with polymer
polylactide with afm, using an independent formula for the
shell thickness provided by the manufacturer of the MBs.
The response of the obtained f-d curves is initially linear fol-
lowed by a non-linear curved downwards regime in the manner
obtained by Elsner et al.22 for multilayer electrolyte shells.
Reissner23 and Pogorelov24 have developed simple analytical
models for the f-d relation for the pre and post-buckling stages
which are very useful for the shell properties’ characteriza-
tion, see also Sec. IV of the present article. Combination of the

transition from Reissner to Pogorelov regime can accurately
calculate Young’s modulus and the shell thickness without
prior knowledge of the shell thickness,26 treating the force
exerted by the cantilever as a point load. More recently, Lytra
et al.27,28 extended the analytical expressions in order to
account for the finite length of contact between the can-
tilever and the MB, instead of a point force that was origi-
nally assumed by Reissner and Pogorelov, with also reliable
estimates of these two properties. Finally, Buchner Santos
et al.29 performed similar afm measurements for MBs cov-
ered with phospholipid monolayer (Definity). In this case, the
response in f-d curves differs significantly from the previous
case because an extensive linear regime is detected followed by
a slightly curved upwards area. The latter part of the response
curve cannot be associated with buckling. Rather, it signi-
fies the influence of stretching in the bulk of the shell in the
manner obtained previously by Lulevich et al.20 also by per-
forming afm measurements. It should be stressed, however,
that resorting to the nonlinear model proposed by the latter
study did not provide accurate estimates of shell elasticity, even
when the shell thickness is known, for the statically interro-
gated shells.29 Moreover, in that same study,29 resorting to the
Reissner model did not provide reliable estimates of the shell
elastic modulus either. Nonetheless, the linear Reissner regime
was present in afm measurements of lipid shells available in
the literature.30 As will be seen in the present study, proper
combination of the linear Reissner regime with the nonlinear
curved down or upwards regimes is required in order to provide
reliable estimates of both types of shells without prior knowl-
edge of the shell thickness. This is essential for treatment of
lipid shells for which defining a shell thickness is not always
possible, and using the area dilatation and bending resistance
as the primary shell properties, instead of Young’s modu-
lus and shell thickness, constitutes the most appropriate shell
model.31

In all of the above measurements, the coating behaves as
an elastic shell under the forcing of a rigid cantilever and the
equilibrium is reached due to internal tensions and moments
developed by the shell. Therefore, it is a contact problem
between the two bodies. In classic shell mechanics, the contact
problem was originally studied by Hertz32 for the contact of
two curved bodies and relatively recently Johnson, Kendall,
and Robert33 (JKR model) extended Hertz’s work to account
for adhesion. More recently Shanahan21 applied the above
methodology to the case of an elastic membrane in an effort
to obtain reliable estimates of its adhesion energy through the
pull-off force from a flat rigid solid. In a different context,
Seifert and Lipowsky introduced the concept of contact poten-
tial in order to study adhesion and stability of a vesicle onto
a solid substrate.34 However, due to the hydrophilic nature of
the cantilever and these coatings, phospholipid shells, in par-
ticular, an ultrathin water film occupies the space between the
MB and the cantilever and full contact is not possible. Thus,
the shell is deformed subject to the disjoining pressure that
develops in the liquid film. The latter is gradually thinning in
response to the external forcing, and the resulting disjoining
pressure is transferred to the deforming shell. The disjoin-
ing or Derjaguin pressure is a manifestation of short range
forces such as London van der Waals interactions, electric
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double layers, or structural forces associated with the ori-
entation of molecules that can be attractive or repulsive and
tend to dominate other forces, such as Laplace pressure, in
contact regions.35,36 These forces can be collectively modeled
in terms of a long range attractive and short range repulsive
potential37 that signifies the forces that emerge between the
shell and cantilever as they approach each other and offers
a convenient means to model the adhesion problem,34,38 and
the contact problem in general, via an interaction potential.
In this fashion, use of the interaction potential has become
a useful tool for the study of a variety of contact problems
ranging from the study of adhesion and stability of vesicles on
solid substrates38,39 to wetting transitions of drops resting on
patterned surfaces.40 Thus a smooth distribution of the force
that is exerted by the cantilever on the deforming shell can
be obtained that can be used in order to capture the different
response patterns observed in afm. A relevant study,41 albeit in
the absence of an external load, was conducted via an energy
minimization principle in order to capture buckling transitions
due to van der Waals adhesion of a spherical shell onto a rigid
substrate. Despite the amount of effort dedicated to the study
of static response of shells, see also Neubauer et al.42 for a
recent review article, there is lack in comprehensive model-
ing of their response in a manner that closely simulates atomic
force microscopy measurements, especially in terms of provid-
ing an accurate description of the load distribution in different
parametric ranges. Standard numerical methodologies do not
provide the load distribution,43,44 while more recent studies
typically employ commercial packages22,45,46 that do not place
emphasis on the load distribution, thus compromising the abil-
ity to capture non-standard response patterns. To this end, in
the present study, the static response of a coated microbubble
that is symmetrically squeezed by two rigid plane surfaces is
modeled in the above-described fashion that couples the elas-
tic stresses that develop in the shell with the intermolecular
forces that mediate the force exerted by the cantilever, through
the disjoining pressure. Numerical simulations are performed
with the finite element method using B-cubic splines as basis
functions in order to accommodate the bending stresses that
develop in the shell. Nonlinear elasticity is adopted47 in order

to model the in-plane and shear elastic tensions that develop on
the shell, coupled with the linear Hooke’s law and strain soften-
ing Mooney Rivlin constitutive law.48 An extensive parametric
study is conducted in order to ascertain the relative importance
of different stiffness elements on the response and recover the
patterns described earlier in the literature.

The rest of the paper is organized as follows: In Sec. II,
the geometry and governing equations are presented, while the
numerical methodology and benchmark calculations are pre-
sented in Sec. III. In Sec. IV, an asymptotic model is presented
as a tool for categorizing the previously identified response pat-
terns and validating the numerical results. A first attempt is also
made to recover shell elastic properties by cross examining the
numerical with the asymptotic results. In Sec. V, we present
numerical results along with a parametric study for MBs cov-
ered with a polymeric (Sec. V A) and phospholipid (Sec. V B)
shell in order to explain the relative influence of elastic proper-
ties and dimensionless numbers. Finally, the main findings and
conclusions of the present paper are summarized in Sec. VI.

II. FORMULATION OF THE PROBLEM
A. Geometry and Lagrangian description

We consider an axisymmetric MB that is encapsulated by
an elastic biomaterial (polymer or phospholipid monolayer),
Fig. 1(a), and has a spherical stress free state. The genera-
trix of the full axisymmetric microbubble is represented by
Lagrangian markers that are assigned to the independent vari-
able ξ, ξ ∈ [0, 1]. Upon introducing variable ξ, it is possible
to describe complex shapes of the interface with the spherical
coordinates of each marker written as functions of ξ,

r = r (ξ) and θ = θ (ξ) , ∀ξ ∈ [0, 1]. (1)

Moreover, the normal and tangential vectors of an arbi-
trary point are49

~n =
rθξ~er − rξ~eθ

sξ
, ~ts =

rξ~er + rθξ~eθ
sξ

, and ~tϕ = r sin θ~eϕ ,

(2)

FIG. 1. (a) Schematic representation of a microbubble under the cantilever resting on a similar solid substrate, with dashed and solid lines denoting the
undeformed and deformed (flat and buckling) configurations, respectively; (b) the Lagrangian description of the generatrix with a certain value of variable
ξ assigned to each Lagrangian marker. ξ = θ0/(π/2), where θ0 denotes the azimuthal position of the markers at the spherical stress free reference state, (r, θ, ϕ)
are the spherical coordinates of each marker in deformed configuration, s is the arc-length, ~n,~ts are the unit normal and tangential vectors, and (σ, z) are the
radial and axial coordinates of the cylindrical coordinated system, σ = r sin θ,with the same origin as the above spherical coordinate system.
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where ~er ,~eθ ,~eϕ denote the unit vectors of a spherical coordi-
nate system and s denotes the arc-length across the generatrix,

sξ = ds/dξ =
(
r2θ2

ξ + r2
ξ

)0.5
; ξ signifies differentiation when

it is used as subscript. We assume that the MB rests on a plane
surface of similar nature as the cantilever and consequently
undergoes symmetric deformations with respect to the equator
as it is compressed by the latter. In this fashion, the substrate
exerts an equal but opposing force to the shell, with respect
to that of the cantilever, and symmetry is satisfied. As will
be seen in the following, this assumption does not restrict in
any way the validity of the simulations, in comparison with
measurements obtained in the same parameter range, provided
that shell deformation does not become exceedingly severe to
the extent that three dimensional wrinkling is avoided. Thus
the physical domain of our analysis extends in θ ∈ [0, π/2],
see also Fig. 1(b); ξ ≡ θ0/(π/2) with θ0 denoting the azimuthal
position of the marker points at the spherical stress free
reference state.

The curvature tensor of the interface is defined as

B = ~∇s~n, (3)

and the principal curvatures along the meridional (or
azimuthal) s and polar ϕ directions, and the corresponding
mean curvature, assume the form

k1 = ks =
r2
ξθξ + r

(
rξθξξ − rξξθξ

)
s3
ξ

+
θξ

sξ
=

1
rs

, (4a)

k2 = kϕ =
θξ

sξ
−

rξ cot θ

rsξ
=

1
rϕ

, (4b)

2km = ks + kϕ . (4c)

B. Elastic tensions and moments

The MB is covered by a biocompatible material, usually
phospholipid monolayer or polymer, in order to decelerate gas
diffusion in water or blood. The encapsulation provides also
mechanical strength. Thus the MB is possible to withstand
external forces by developing elastic tensions and moments.
In the present paper, we describe the elastic tensions and
moments in the context of the theory of thin elastic shells
and continuum mechanics.47 In the elastic shell, in-plane and
shear tensions along with bending moments are developed as a
result of deformation of the shell subject to an external load. In
Fig. 2, the tensions and moments are illustrated on an axisym-
metric surface patch that is assumed to undergo axisymmetric
deformations. As can be gleaned from the above figure, both
tensions and moments are written in the curvilinear [s, ϕ, n]
system for simplicity since the [s,ϕ] coordinates coincide with
the principal directions50,51 of strain in the context of axisym-
metry. Therefore, the meridional (τss) and polar (τϕϕ) tensions
are introduced, which correspond to the in-plane stress resul-
tants. The transverse shear stress q lies in an s-ϕ plane and
arises as a result of the variation of the meridional (mss) and
polar (mϕϕ) bending moments on the shell interface. The total
tension tensor and bending moment tensor read as

T = τss~ts~ts + τϕϕ~tϕ~tϕ + q~ts~n and m = mss~ts~ts + mϕϕ~tϕ~tϕ .

(5)

FIG. 2. Elastic in-plane (τss and τϕϕ ) and shear (q) tensions, along with
bending moments (mss and mϕϕ ) acting on an axisymmetric infinitesimal
surface patch on a sphere with dimensions ds × (σdϕ).

A large number of elastic materials respond linearly in
the presence of an external load for small deformations.48,50

However, with further increase in the load, the f-d relation
may become non-linear, even if buckling or other phenomena
do not occur. In this case, their behavior is characterized as
strain softening or strain hardening, depending on the varia-
tion of the effective elasticity modulus. The strain softening
materials exhibit a smaller elasticity modulus as the deforma-
tion increases, while the opposite happens for strain hardening
materials. These observations can be described mathemati-
cally using the appropriate constitutive law. For the first group
of materials, Hook’s law is more relevant, while for the strain
softening and strain hardening materials Mooney-Rivlin and
Skalak constitutive laws are used,31,48,50 respectively. They are
all associated with the appropriate form of energy per unit of
undeformed surface w. In the following, the strain energy func-
tion of Hooke’s law, wHK, and Mooney-Rivlin constitutive law,
wMR,

wHK =
Gs

4 (1 − ν)

[(
λ2

s − 1
)2

+ 2ν
(
λ2

s − 1
) (
λ2
ϕ − 1

)
+

(
λ2
ϕ − 1

)2
]
, (6a)

wMR = w (I1, I2)

=
GMR

2

[
(1 − b)

(
I1 + 2 +

1
I2 + 1

)
+ b

(
I1 + 2
I2 + 1

+ I2 + 1

)]
,

(6b)

are mostly used, with

λs =
ds

dsSF
=

√
r2
ξ + r2θ2

ξ

rSFθSF
ξ = R0π/2

, λϕ =
σdϕ

(σdϕ)SF
=

σ

σSF
,

(7a)
I1 = λ

2
s + λ2

ϕ − 2, I2 = λ
2
s λ

2
ϕ − 1 (7b)
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denoting the principal stretch ratios and 2d invariants of the
Green-Lagrange deformation tensor, defined on the deformed
shell; σ = r sin θ is the radial polar coordinate while ν signi-
fies the Poisson ratio. Upon introducing the variation of strain
energy, the in-plane tensions assume the following form in the
meridional and polar directions:

τHK
ss =

Gs

λϕ (1 − ν)

[
λ2

s − 1 + ν
(
λ2
ϕ − 1

)]
,

τHK
φφ =

Gs

λs (1 − ν)

[
λ2
φ − 1 + ν

(
λ2

s − 1
)]

, (8a)

τMR
ss =

GMR

λsλϕ


λ2

s −
1(

λsλϕ
)2



[
1 + b

(
λ2
ϕ − 1

)]
,

τMR
φφ =

GMR

λsλϕ


λ2
φ −

1(
λsλϕ

)2



[
1 + b

(
λ2

s − 1
)]

, (8b)

where Gs = χ/(2(1 + ν)), GMR = χ/3 denote the surface shear
modulus and χ denotes the area dilatation modulus. χ = Eh
= 3Gh, with E and G denoting the 3D Young’s modulus and
shear modulus, respectively, and b denotes a dimensionless
parameter, b ∈ [0, 1], defining the extent of nonlinearity of
the Mooney-Rivlin law. The case b = 0 corresponds to a neo-
Hookean membrane, whereas as b tends to zero the membrane
becomes softer.48 Moreover, the description of the strain soft-
ening behavior with the Mooney-Rivlin constitutive law allows
for unlimited dilatation of the membrane that is satisfied by
progressive membrane thinning. More details on the deriva-
tion and interpretation of the different constitutive laws that
provide the in-plane tensions are provided elsewhere in the
literature.48,50,51

A standard quadratic function is employed for the bending
energy of the shell,52

wb =
kb

2

(
K2

s + 2νKsKϕ + K2
ϕ

)
, (9)

where Ki = λiki − kSF
i are the bending strains along the

principal directions s and ϕ, (i→ s or ϕ and indices are
not summed) while for an initially spherical microbubble
kSF

i = 1. Employing the first variation of the bending energy
with respect to the bending strain52,53 provides the bend-
ing moments in a similar fashion to the in-plane elastic

tensions,

mss =
1
λϕ

∂wb

∂Ks
=

kb

λϕ

(
Ks + νKϕ

)
,

mϕϕ =
1
λs

∂wb

∂Kϕ
=

kb

λs

(
Kϕ + νKs

)
, (10)

where kb denotes the bending modulus that, according to
classical shell theory,47 reads as

kb =
Eh3

12
(
1 − ν2) . (11)

It should also be noted that MBs that are covered with
polymer are stiff in terms of their Young’s modulus (E ∼GPa);
their shell thickness is relatively large (h ∼ 10-40 nm), and
consequently, it can be concluded that their bending modulus
follows the above relation with Young’s modulus and the shell
thickness (h), as in convectional shells. On the other hand,
MBs that are covered with the phospholipid monolayer are
generally less stiff, whereas their shell thickness cannot be
easily defined. Therefore, in the present study, it is assumed
that for MBs covered with polymer the independent elastic
properties are Young’s modulus (E) and the shell thickness (h),
whereas for phospholipid coating the independent properties
are the area dilatation modulus (χ) and the bending modulus
(kb). Finally the elastic shear tension is related to the bending
moments via a moment balance on an infinitesimal surface
patch,50,54

~q = ~∇s · m ·
(
I − ~n~n

)
. (12)

C. Equations of equilibrium

In order to simulate actual afm measurements that take
place in an aqueous solution, the microbubble is considered to
be emerged in a liquid phase with the cantilever positioned in
its vicinity and gradually squeezing it, Fig. 3(a). In this fash-
ion, the evolution of the static equilibrium of the microbubble
is investigated at different stations of the cantilever charac-
terized by the distance z0 between it and the center of mass
of the shell, Fig. 3(a). The latter, in view of the symmetry
of the problem, is positioned at the intersection between the
two axes of symmetry, i.e., the axis of rotation z and the mid
plane between the two rigid surfaces squeezing the microbub-
ble, Fig. 3(a). In this process, due to the hydrophilic nature
of the shell and the cantilever, an ultrathin water layer with
height δ = δ(ξ) occupies the space between them that resists

FIG. 3. (a) Schematic representation
of a microbubble deformed by a
flat and rigid cantilever. As the can-
tilever approaches, i.e., z0 decreases,
the applied force on the shell increases
and, depending on the elastic parame-
ters, flattened or buckled shapes arise.
(b) Dimensionless potential, ŵint =

wint (δ)/w0, and dimensionless disjoin-
ing pressure, Π̂ = Π (δ) δA/w0, as a
function of the relative distance from the
cantilever, δ/δA.
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thinning as the force exerted by the cantilever increases,
Fig. 3(b). This constitutes an additional resistance to the
cantilever’s advancement which is modeled as an additional
pressure of the water near the contact area in comparison
with the bulk aqueous phase. This pressure difference is the
sum of intermolecular forces that act between the water film
and the shell, and it is known as disjoining pressure. This
concept is employed in the present study for the descrip-
tion of the interaction between the cantilever and the shell,
by introducing a long range attractive-short range repul-
sive potential function. A typical form of the interaction
potential37–39 is

wInt (δ) = w0



(
δA

δ

)4

− 2

(
δA

δ

)2
, (13a)

WInt =

∫
A

wIntdA
Symmetry
−−−−−−−−−→ WInt = 2π2

1∫
0

wIntr sin θ
ds
dξ

dξ,

(13b)

δ (ξ) = z (ξ) − z0, (13c)

where ẑ0 denotes the relative position of the cantilever with
respect to the equatorial plane of the MB, Fig. 3(a), and δA

denotes the characteristic length for which the interaction
potential takes the minimum negative value �w0, Fig. 3(b).
Note also that in Fig. 3(b) a positive (repulsive) force on the
shell is taken to point away from the cantilever. As the distance
between the cantilever and shell decreases and approaches
the characteristic length δA, an additional source of energy
is attributed to the shell interface, WInt, reflecting its interac-
tion with the cantilever. The total energy content of the shell,
provided by the sum of strain, bending, intermolecular, gas
compression, and surface energy, reads as

UT = Wstr + Wb + Wint + Wc + Ws, (14)

where

Wstr =

∫
A

wstrdA, with wstr = wHK or wMR, (15a)

Wb =

∫
A

wbdA =
∫
A

kb

2

(
K2

s + 2νKsKϕ + K2
ϕ

)
dA, (15b)

Wc = −

V∫
V0

(PG − P0) dV
P0=PA
−−−−−→ Wc = PA (V − V0)

−
PAV0

1 − γ
*
,

(
V0

V

)γ−1

− 1+
-

, (15c)

Ws =

∫
A

γBW dA, (15d)

Wint =

∫
A

wint (δ) dA. (15e)

In the above, PA denotes the ambient atmospheric pressure,
P0, V0 and PG, V denote the internal gas pressure and volume
at stress free conditions and at static equilibrium subject to

deformation, respectively, and γ and γBW denote the polytropic
gas constant and shell-water interfacial tension.

Minimization of the total energy gives the force balance
in the normal and tangential directions,

~n : PG − PA + Π = ksτss + kϕτϕϕ + 2km (γBW + wint)

−
1
σ

∂ (σq)
∂s

, (16a)

~ts : −

[
∂τss

∂s
+

1
σ

∂σ

∂s

(
τss − τϕϕ

)
+ ksq

]
= 0, (16b)

while the elastic shear tension, based on the bending moment
balance in Eq. (12), reads

q =
1
σ

∂σ

∂s

[
∂ (σmss)
∂σ

− mϕϕ

]
. (16c)

The disjoining pressure Π arises as part of the mini-
mization of the intermolecular energy with respect to the
radial, r, and azimuthal, θ, position of the shell and equals
the derivative of the interaction potential in the normal
direction,

Π = −
∂wint

∂n
=

4w0

δA



(
δA

δ

)5

−

(
δA

δ

)3

∂δ

∂n

~n=σs~ez−zs~eσ
−−−−−−−−−−→

δ=z0−z
Π

= −
4w0

δA



(
δA

δ

)5

−

(
δA

δ

)3
σs, (17)

whereas the total intermolecular force on the shell is

~F = −
δWInt

δ~r
=

∫
A

(
−
∂wint

∂n
− 2kmwint

)
~ndA. (18)

More details on the derivation of the disjoining pressure Π
and the total normal component of the intermolecular forces
on the shell, Π � 2kmwint, via the minimization of the inte-
gral in Eq. (15e) are provided in the Appendix. The sec-
ond term, 2kmwint, in the integrand of Eq. (18) is typically
subdominant to the disjoining pressure. It should also be
stressed that in the above derivation the normal vector points
toward the cantilever and dδ/dn < 0, see also Fig. 3(a). As a
result, attraction/repulsion on the shell is signified by a posi-
tive/negative disjoining pressure Π, contrary to standard rep-
resentations such as the one shown in Fig. 3(b) for which the
normal to the interface is taken to point away from the sub-
strate and positiveΠ values denote repulsion. The formulation
in Eq. (16) adopts the convention used for the derivation of
Eq. (18). Nonetheless, graphic representations of the force on
the shell shown in Secs. III–V adopt the convention in Fig. 3(b)
for conformity with the literature.

Regarding the nature of the force, as the minimum dis-
tance,δ, between any point on the shell and cantilever increases
(δ � δA), the potential is essentially zero and no significant
interaction between the shell and cantilever is registered. As
the cantilever approaches the shell, in other words, as the dis-
tance z0 from the shell equator decreases, δ typically decreases
as well while the interaction potential acquires a decreasing
negative value (δ ∼ δA). Therefore, when attractive forces pre-
vail in this regime, i.e., δ > δA, the disjoining pressure and the
resulting force acquire a positive value in Eq. (16a) and along
with the gas pressure push the shell toward the cantilever. At
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δ = δA, the potential has a minimum value (�w0); this is the
position where the disjoining pressure and the force vanish,
and with further decrease in distance between them (δ < δA),
the two points are in repulsion and consequently the disjoining
pressure and the resulting force change sign becoming nega-
tive. In the present study, both potential and disjoining pressure
have a distribution along the shell surface since the liquid film
height, δ(ξ), is not generally constant. Thus, the total force
becomes zero at a position slightly different from the charac-
teristic length δA. In particular, it is a position where a part of
the shell is in repulsion, usually the area around the contact
region, while the rest of the shell is in attraction. In fact, at a
certain distance z0, the overall force exerted by the cantilever
on the shell vanishes as a result of the repulsion in the contact
region and attraction in the rest of the shell counteracting each
other. At this reference point, we set the deformation ∆ to zero
and we calculate subsequent deformations via the following
transformation in dimensionless form:

d̂ = ∆/R0 = ẑ0 (F = 0) − ẑ0 (F). (19)

Provided the interaction between the shell and cantilever
is relatively weak, w0/χ � 1, so that multiple crossings of
the horizontal axis that measures the interaction force do not
occur in the f-d curve and the MB remains mostly spheri-
cal when this force vanishes, the above is a practical way to
measure deformation. It essentially captures the cantilever’s
movement, and it is the same as the deformation of the shell
pole in the regime of flat shapes, while in the regime of
buckled shapes it is the same as the deformation of the ring
at the dimple area. In addition, it must be pointed out that
we adopt this approach because we wish to compare against
the afm experimental data in a future study. The above are
clearly illustrated in Sec. V, where the force and the deformed
shape are calculated as part of the post-processing of the
simulation.

In addition, the reduction of the shell volume during
compression is associated with pressure variations of the
encapsulated gas via the isothermal gas law,

PGVγ = P0Vγ
0 , (20a)

V =
∫
V

dV =
4π
3

1∫
0

r3θξ sin θdξ, (20b)

where subscript 0 denotes the pressure and the volume in the
reference state, i.e., P0 = PA + 2γBW /R0, V0 = 4πR3

0/3, and
γ = 1.07. The reference state is typically spherical and stress-
free unless otherwise stated.

The problem formulation is rendered dimensionless by
introducing the stress free radius as the characteristic length
scale, R0. Then the solution depends mainly on the following
dimensionless parameters, namely, k̂b, P̂A, γ̂BW , Ŵ0, and ẑ0:

k̂b =
kb

χR2
0

, P̂A =
PAR0

χ
, γ̂BW =

γBW

χ
,

Ŵ0 =
w0

χ
, ẑ0 =

z0

R0
, χ̂ = 1, (21a)

measuring the relative stiffens of bending, gas compressibil-
ity, surface tension, and interaction potential with respect to

the resistance to elongation. ẑ0 represents the dimensionless
distance between the cantilever and the equatorial plane of
symmetry of the microbubble that is located midway between
the cantilever and rigid substrate. It is used as a parameter that
controls the translation of the cantilever with respect to the
shell and implicitly provides a means to gradually increase the
force exerted on the shell, as this is calculated via Eq. (18). For
polymeric shells that normally have thicker coatings, bend-
ing resistance is related to the elastic modulus and the shell
thickness,47

k̂b =
kb

χR2
0

=

Eh3

12(1−ν2)

EhR2
0

=
1

12
(
1 − ν2) (

h
R0

)2

. (21b)

We apply boundary conditions of axisymmetry in the pole,
ξ = 0, and symmetry in the equator, ξ = 1,

rξ = 0 at ξ = 0 and 1, (22a)

θξξ = 0 at ξ = 0 and 1, (22b)

θ (ξ = 0) = 0 and θ (ξ = 1) =
π

2
. (22c)

Finally, in the graphs shown in Secs. III–V, the disjoining
pressure Π, the total energy UT, its components W i, the force,
and the deformation are made dimensionless as follows:

Π̂ =
ΠδA

w0
, ÛT =

UT

χR2
0

, Ŵi =
Wi

χR2
0

,

F̂ =
F√
χkb

, ẑ0 =
z0

R0
. (23)

III. NUMERICAL IMPLEMENTATION AND VALIDATION
A. Finite element method

Modeling of the elasticity terms for thin shells with finite
thickness requires the mathematical description of the first
derivative of shear tension. Therefore the equilibrium equa-
tions contain high order derivatives. In particular, the normal
force balance contains fourth order derivatives of the r and
θ coordinates and the tangential force balance contains their
third derivative. As a result, we use the b-cubic splines, which
are piecewise cubic curves55 for the representation of the
unknown position of the shell. The unknown shell coordinates
r and θ are written as

r (ξ) =
N+1∑
j=0

ajBj and θ (ξ) =
N+1∑
j=0

bjBj, (24)

where αj and bj are the unknown coefficients, Bj are the spline
basis functions, and N is the total node number. The spline
representation introduces two additional coefficients, which
correspond to the imaginary nodes j = 0 and N + 1, and they
are calculated by the imposition of the boundary conditions.
In order to solve the above set of non-linear equations (16)
and (20) along with boundary conditions (22), we use the
Galerkin finite element method. Thus, integrating by parts
twice the normal force balance, we reduce the order of the
differential equation while b-cubic splines guarantee continu-
ity up to the second derivative.55 In the same manner, upon
a single integration by parts of the tangential force balance,
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we eliminate the derivative of the in-plane tension, τss, and
the shear tension, q. Thus, by integrating over the deformed
shell surface, dA = r sin θdϕds, the weak form of the problem
formulation reads as

R1 =

1∫
0

[(
ksτss + kϕτϕϕ + 2km (γBW + wint)

− PG + PA − Π) Biσsξ
]

dξ

−

1∫
0



σ
(
Bi,ξξsξ − Bi,ξsξξ

)
s2
ξ

+
mϕϕBι,ξσξ

sξ


dξ

+

{
σmssBi,ξ

sξ
− σqBi

}ξ=1

ξ=0

= 0, (25a)

R2 =

1∫
0

[
τssBi,ξσ + Biσξτϕϕ + σmss

(
ks,ξBi + ksBi,ξ

)
+ ksmϕϕBiσξ

]
dξ − {(ksmss + τss)σBi}

ξ=1
ξ=0 = 0,

(25b)

R3 = PGVγ − P0Vγ
0 = 0. (25c)

The boundary terms in curly brackets result from the inte-
gration by parts; they are zero at ξ = 0 since σ(ξ = 0) = 0
and take a non-zero value at ξ = 1, thereby modifying the last
three equations of normal and tangential force balance. Inte-
gration along the polar ϕ-direction is eliminated due to the
assumption of axisymmetry. The above relations constitute a
non-linear set of equations, ~R

(
~x
)
= ~0, that we solve with the

standard Newton-Rapshon method,

J
(
~xn+1

)
·
(
~xn+1 −~xn

)
= −~R

(
~xn+1

)
, (26)

where ~R
(
~x
)

is the vector of residuals, J ≡ ∂Ri/∂xj signi-

fies the Jacobian matrix and ~x denotes the unknown vec-
tor, ~x = [a0, b0, . . . , ai, bi, . . . , aN+1, bN+1, PG]T. The Jaco-
bian matrix is in arrow form, thus significantly reducing the
time required to invert the matrix during Newton’s iterations.
Moreover, analytic calculation of the Jacobian matrix ensures
quadratic convergence of the solution. In addition, we seek
different solutions as the relative position, ẑ0, is reduced. We
perform arc-length continuation to follow the solution around
limit points,53 beyond which a solution cannot be obtained
as the operating parameter, ẑ0, varies. In this case, param-
eter ẑ0 is no longer known but is calculated as part of the
solution. The stability of a certain solution branch is deter-
mined by the number of negative eigenvalues56 for each one
of the converged solutions obtained by varying the relative
position ẑ0.

B. Benchmark calculations

In order to validate our finite element methodology, we
compare our results with simulations of the contact prob-
lem available from the literature. In particular, Updike and
Kalnins43,44 solved a similar problem in the context of con-
ventional shell mechanics and calculated the f-d curve43 and
pressure distribution44 between the shell and the flat punch

assuming a linear material and small deformations. They found
that most of the pressure is applied at the end of the contact
region, in the sense that it can be replaced by a point force con-
centrated at the edge. In the latter studies, the response of the
shell is described by the intersection of two solution branches
in the f-d diagram. The first is the trivial solution pertaining
to the linear part of the response that is characterized by flat
shapes in the contact region, while the second branch of buck-
led shapes emerges as a bifurcation from the main one and is
characterized by non-linear response, as will be discussed in
Secs. IV and V.

Upon employing the formulation proposed by Updike
and Kalnins,44 the load distribution was indeed calculated53

in agreement with results reported in the former study. This
verified the tendency to produce an almost point load distribu-
tion with the peak located at the edge of the contact region, as
the intensity of the load increases toward the buckling range.
It was, however, difficult to obtain convergence with mesh
refinement, especially as the angle that defines the contact
region increases toward the buckling regime. In fact, the latter
regime could not be captured in this fashion. As an alterna-
tive approach, we set the point load, QL in N/m, applied at the
edge of the contact region, ξL = α/(π/2), and the normal force
balance and kinematic condition are reformulated as follows:

P (ξ) = δ (ξL) PL ⇒ F =
∫
A

δ (ξL) PLdA = QL2πσL,

(27a)

R1 =

1∫
0

[(
ksτss + kϕτϕϕ + 2kmγBW + PA − PG

)
Biσsξ

]
dξ

−

1∫
0



σ
(
Bi,ξξsξ − Bi,ξsξξ

)
s2
ξ

+
mϕϕBi,ξσξ

sξ


dξ

+

[
σmssBi,ξ

sξ
− σqBi

] ξ=1

ξ=0

+ σQLBi |ξ=ξL
= 0

i = 1, . . .N , (27b)

R4 = zξ = rξ cos θ − rθξ sin θ = 0 at ξL =
α

π/2
. (27c)

The unknown point load QL is introduced in the form of a dis-
continuity at the edge of the contact region, and residual R2

corresponding to the tangential force balance is not modified in
the above context. The parameters that are used in this simula-
tion are the same as the ones employed in the literature;43,44,57

E = 109 Pa, R0/h = 100 (e.g., R0 = 10�7 m and h = 10�9 m),
ν = 0.3, γBW = 0 N/m, and γ = 0, for a Hookean shell without
pre-stress or interfacial tension. Parameter γ that controls the
pressure variation is set to zero in order to maintain a fixed
internal pressure as in the above studies. As can be gleaned
from Fig. 4, our numerical results, obtained with a mesh of 400
B-cubic splines along the meridional direction, fully recover
the analytical/numerical results provided in Refs. 43, 44,
and 57 for both flat and buckling curves. In particular, as
can be surmised by cross-examining panels (4a) and (4b), the
f-d curves shown in Fig. 4(a), obtained using the modified
formulation in Eqs. (27), exhibit the initial linear part known
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as Reissner regime followed by a nonlinear response pattern,
f ∼ d1/2, known as the Pogorelov regime. Furthermore, the
corresponding transition from shapes that are flattened around
the pole region to shapes characterized by crater formation in
the north pole region is captured, followed by a narrow bend-
ing strip where contact takes place before the shell regains its
sphericity in the bulk. Eigenvalue calculations indicate the loss
of stability of the Reissner regime at d/h∼3, which is very close
to the value and corresponding angle of 10◦ available in the

literature57 that constitutes a bifurcation point in the standard
calculation via Eqs. (27). This is a supercritical bifurcation that
evolves into the branch with buckled shapes which inherits the
stability of the main branch of flat shapes and whose energy
content is lower than that of the main branch for the same rel-
ative deformation, see also Fig. 4(c). Please note that solely
for the purpose of comparison with the work of Updike and
Kalnins43,44,57 the f-d axes in Fig. 4(a) are dimensionlized as
F̂ = 106F/(2πEhR0) and d̂ = ∆/h.

FIG. 4. (a) Comparison of dimension-
less force F̂as a function of dimension-
less deformation d̂ between the Updike
and Kalnins43,44,57 solution, the sim-
plified model, and the intermolecular
forces model for two different adhe-
sive parameters (w0), (b) MB in the
deformed flat and buckling configura-
tion obtained with the intermolecular
forces model (w0 = 10�4 N/m), (c)
dimensionless total energy ÛT as a func-
tion of deformation d̂, (d) comparison of
force F̂ as a function of dimensionless
distance ẑ0 between the two intermolec-
ular forces model cases, (e) evolution
of the dimensionless disjoining pres-
sure distribution Π̂ as a function of the
radial coordinate σ for indicative val-
ues of deformation obtained with the
intermolecular forces model (w0 = 10�4

N/m).
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The above simulations were repeated with the novel for-
mulation presented herein involving the intermolecular forces,
see also Eq. (16). The benchmark calculations as well as results
presented in Secs. IV and V were obtained with a 400 ele-
ment mesh of B-cubic splines. Mesh refinement simulations
to 400 and 800 elements fully recover the load distribution,
contrary to the standard formulation44 that had problems in
achieving satisfactory numerical convergence, especially at
large deformations. Figure 4(d) illustrates the total dimen-
sionless force from the latter simulations plotted against the
distance between the cantilever and shell equator, ẑ0, with
marked areas of overall attraction and repulsion. Selecting a
relatively weak interaction potential, w0 = 10�4 N/m, and a
typical value for the characteristic range of the intermolec-
ular forces, δA = 50 nm, we obtain the standard response
pattern available in the literature43,44,57 and recovered with
the simplified formulation provided by Eq. (26), for the com-
pression of a spherical shell by two rigid plane surfaces.
Thus, the validity of our methodology was verified, see also
panels (4a)–(4c). The above value for the interaction poten-
tial was selected, in the absence of any experimental data,
so that we recover the numerical results from the literature.
Using a stronger interaction potential gives rise to limit points
in the f-ẑ0 curve, Fig. 4(d), and this impairs the calcula-
tion of deformation and causes deviations from the litera-
ture. Furthermore, the negative minimum force that emerges
for small deformations corresponds to a maximum attractive
force that is also known as the pull-off force. It signifies the
force required to move the microbubble away from the can-
tilever once adhesion has been established. Clearly, this is a
very small force for the particular MB that is interrogated
in Fig. 4 owing to the very small value of the interaction
potential that was introduced for the purposes of comparison
against results available from the literature. When actual afm
measurements are simulated, the measured pull-off force is
a reliable marker that can be used to estimate the interaction
potential of the shell and cantilever.

In Fig. 4(b), we plot the shape of the deformed microbub-
ble that corresponds to flat and buckling solutions as obtained
with the novel methodology that are almost indistinguishable
from the equivalent shapes from the literature. In addition,
eigenvalue analysis of the Jacobian matrix was performed as
the dimensionless distance ẑ0 varied and it was seen that only
the stable part of the bifurcation diagram obtained with the
classical formulation was recovered in the form of a single
unified branch, i.e., the initial Reissner regime followed by the
Pogorelov post-buckling regime that emerged when the con-
tact region exceeded the threshold value of, roughly, 10◦, also
in agreement with the literature. The above picture was com-
pleted by calculating the total energy of the two branches and,
as it was expected, it acquired the same values with the ones
obtained by the standard formulation with the post buckling
curve being energetically favorable after the buckling point,
Fig. 4(c). It is also interesting to note that the distribution of
the disjoining pressure, Fig. 4(e), gradually tends to concen-
trate at the end of the contact area, thus recovering results
available from the literature.44

Finally, following the above benchmark calculations
against theoretical results in Figs. 5(a) and 5(b), we present
a preliminary comparison with afm data available from the
literature.22,30 In particular, simulations with the disjoining
pressure model and elastic properties which correspond to
MBs covered with polymer as in the work of Elsner et al.22

show satisfactory agreement. The fem curve initially exhibits
a linear response with the same slope as the experimental one
while around∆ = 52 nm we observe transition to the non-linear
regime where buckling takes place, see also the embedded
graph. At relatively high deformations, the response in both
the fem and experimental curves is slightly curved upwards,
which is due to the gas compression. However, the experimen-
tal data exhibit instabilities that are manifested in the negative
slope of the force deformation curve, which are probably
due to defects, 3d, plastic deformations, or even viscoelastic
creep effects,58 which the present model does not account for.

FIG. 5. (a) Comparison between the present numerical model and experimental force-deformation curve by Elsner et al.22 The simulation parame-
ters are E = 252 MPa, h = 25 nm, ν = 0.33, R0 = 7.9 µm, W0 = 10�5 N/m, and δA = 20 nm with Hooke’s constitutive law; embedded shape
obtained at deformation 150 nm. (b) Comparison between the present numerical model and experimental force-deformation curve by Abou-Saleh et al.30

The simulation parameters are χ = 7.7 × 10�3 N/m, kb = 1.76 × 10�15 Nm, ν = 0.5, R0 = 1.75 µm, W0 = 10�5 N/m, and δA = 50 nm with the Mooney-Rivlin
constitutive law; embedded shapes obtained at deformations 1 µm and 1.7 µm.
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Hence the simulated curve in Fig. 5(a) was not pursued beyond
deformations on the order of 200 nm, for which the experi-
mental curve is dominated by such instabilities. Moreover, we
compare our model with afm data for MBs covered with phos-
pholipid monolayer that were obtained by Abou-Saleh et al.30

In this case, the simulation parameters are obtained via the
experimental curve and employment of the methodology for
parameter estimation proposed in Sec. IV. The two curves are
in excellent agreement, revealing the validity of the method
proposed herein. In particular, both curves initially exhibit
a linear response while subsequently instead of buckling, a
strong curved upwards regime is obtained which is dominated
by gas compressibility. In this case, simulations also show that
buckling is bypassed and the shell around the pole area where
contact takes place remains flattened, see also the embedded
shapes in Fig. 5(b).

IV. ASYMPTOTIC ANALYSIS

The above theoretical formulation can provide an accurate
solution of the required force to achieve a certain deformation
in the context of axisymmetry. However, a simpler analyti-
cal model that relates the force with the deformation will be
very useful in order to better interpret the physical mecha-
nisms behind the observed/calculated response patterns and
provide the tools for extracting the shell elastic parameters out
of f-d curves obtained via afm measurements. The f-d curves
obtained from hard shells usually exhibit linear response fol-
lowed by a non-linear regime curved downwards, Fig. 6(a).
Theory and simulations suggest that in the former regime
the shell remains flattened, while in the latter buckling takes
place. Thus, we have proposed in a previous article26 the clas-
sic relations developed by Reissner23 and Pogorelov24 for the
asymptotic description of this response. In this section, we will
illustrate the manner in which this response pattern emerges
in the context of the model proposed herein that calculates
a smooth load distribution via an interaction potential. The
asymptotic structure that identifies a contact, transition, and
outer region on the shell interface with the ultra-thin water film
that occupies the space between the shell and the hydrophilic
cantilever will be employed that has been previously used in the
literature38,39 in order to describe cell adhesion. In this fashion,
it will be possible to reveal the underlying mechanism behind
unconventional response patterns, such as those obtained when
soft shells are statically interrogated, see Fig. 7(a), in which
case the initial linear response is followed by a nonlinear
curved upwards regime.

The graphs in Figs. 6 and 7 are obtained numerically for
a hard, P̂A = 3 × 10−3, and a soft shell, P̂A = 3, respectively,
and present an indicative evolution of shape, load distribu-
tion, and energy decomposition with increasing external force
pertaining to the above-mentioned static response patterns. In
particular, Figs. 6(b)–6(d) portray the transition from flat to
dimpled shapes and the corresponding load distribution in the
form of the disjoining pressure exerted on the shell. The lat-
ter two graphs, in particular, illustrate the fashion in which
the load applied on the shell, as the rigid plate approaches
thus intensifying the force, transforms from a point load at
the pole, Fig. 6(c), to a point load applied at the edge of the

contact region, Fig. 6(d). In the latter graph, an internal layer
is established at the edge of the contact region, known as the
transition layer, that provides a smooth transition in the load
distribution between the contact and bulk regions of the shell.
The response to a point load distribution was examined in a
previous study26 where deviations were registered in the calcu-
lated deformation from numerical results obtained for a rigid
plane, i.e., a flat punch, instead of a point load, especially in
the Pogorelov regime of buckled shapes. The present method-
ology provides a very accurate description of the deformation
and load distribution, but also, provided a large enough contact
length, L, has been established so that it is much larger than the
characteristic length of intermolecular forces, i.e., δA/L � 1,
one that is amenable to analysis that provides the structure of
the above static equilibria.

In this context, we separate the generatrix of the shell into
three regions (contact, transition, and outer) in order to identify
the dominant force balance across these areas, Fig. 8. In par-
ticular, we identify a flat contact region whose length-scales
in the σ and z directions are L ∼ R0 sin θc and δA, respectively,
with θc denoting the extent of the contact region; similarly the
arc length s along the contact region scales like L as well. In
this region, the transverse shear q vanishes and the dominant
force balance in the normal direction is formed by the disjoin-
ing pressure exerted by the film on the shell and the internal
microbubble pressure that is adjusted in order to accom-
modate volume compression. In the tangential direction, in-
plane stresses develop in response to area compression of the
shell,

~n : PG − PA ≈
∂W
∂n

, (28a)

~ts :
∂τss

∂s
≈ −

1
σ

∂σ

∂s

(
τss − τϕϕ

)
. (28b)

Compressive strain is mainly generated in the adjacent
transition region, where significant bending also takes place,
and is enforced on the contact region via the matching con-
dition at their interface. As the contact length increases and
the above structure is gradually established, see also Figs. 6(c)
and 6(d), the load tends to vanish within the contact region
and concentrates at its edge where the adjacent region develops
characterized by a narrow local peak in the disjoining pressure,
Fig. 6(d). This is the structure that is assumed in standard con-
tact studies where a jump is postulated in the load distribution
between the contact and free, or outer, regions.43,44,57

In the context of the present methodology, this disconti-
nuity is relaxed within an additional internal layer. This is the
transition layer where the dominant balance is formed between
the disjoining pressure and the bending stresses that develop as
a result of the change in curvature that takes place in this region.
The length-scales in the normal, n, and tangential, s, directions
of the interface in this region are δ/R0 and `/R0, respectively,
with ` ∼

√
R0δ in order to conform with the above dominant

balance. As the force increases, the interaction potential in the
transition region is not characterized by the maximum value
w0, Fig. 6(c). Rather, it is the energy acquired by the shell
locally, wc, as the film compresses to accommodate repulsive
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FIG. 6. (a) Force-deformation (F-∆) curve for a MB covered with polymer type biomaterial,
(
k̂b = 3 × 10−5, P̂A = 3 × 10−3, Ŵ0 = 2 × 10−6, γ̂BW = 0

)
,

(b) microbubble in the deformed configuration for indicative solutions characterized by flat and buckling shapes. Evolution of the profiles of the dimen-
sionless disjoining pressure Π̂ as a function of the radial coordinate σ for indicative (c) flat and (d) buckling solutions, (e) components of the dimensionless total
energy Ŵi as a function of the deformation, (f) zoom in the energy diagram in the area around the buckling point, (g) zoom in the energy diagram in the area
dominated by the gas pressure. Hooke’s law is used for the shell with the following physical properties: R0 = 1.5 µm, E = 2.1 GPa, h = 25 nm, w0 = 10�4 N/m,
δA = 50 nm, γBW = 0 N/m, ν = 0.5.

forces. Consequently, upon introducing

n =
n′

δ
, ŝ =

s′ − L
`

, q̂ =
q′

kbδ/`3
,

ŵ =
w′

wc
, L = R0 sin θ, (29)

we obtain as the dominant balance in the transition layer




~n :
∂q̂
∂ŝ
≈
∂ŵ
∂n

*
,

wcR2
0

kb

+
-

(30a)

~ts :
∂τŝŝ

∂ŝ
≈ −ksq̂, (30b)
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FIG. 7. (a) Force-deformation (F-∆)
curve for a MB covered with lipid type
biomaterial

(
k̂b = 2.7 × 10−3, P̂A = 3,

Ŵ0 = 2×10−3, γ̂BW = 0
)
, (b) deformed

shape that corresponds to indicative flat
solutions, (c) components of the dimen-
sionless total energy Ŵi as a function of
the deformation, and (d) evolution of the
profiles of the dimensionless disjoining
pressure Π̂ as a function of the radial
coordinate σ. The Mooney-Rivlin law
is used for the shell with the follow-
ing physical parameters: δA = 50 nm,
γBW = 0 N/m, ν = 0.5, R0 = 1.5 µm,
χ = 0.05 N/m, kb = 3 × 10�16 Nm,
w0 = 10�4 N/m.

q =
∂mss

∂s
+

mss

σ

∂σ

∂s
−
∂σ

∂s

mφφ

σ

m̂ss>>m̂φφ

−−−−−−−−→ q̂ ≈
∂m̂ss

∂ŝ
. (30c)

Thus, the transverse shear q that is generated in the transi-
tion layer is directly proportional to the repulsive intermolecu-
lar forces that develop in that region, O

(
wcR2

0/kb

)
, and results

in moment, m̂ss, exerted on the free part of the shell, as well
as the in-plane stress, τŝŝ, that compresses the contact region.
In fact, the Reissner and Pogorelov regimes are distinguished

FIG. 8. Schematic representation of the contact, transition, and outer regimes
along the shell surface.

by the fact that the later in-plane stress on the contact region is
finite and zero, respectively, reflecting the state of compression
of the flat contact region and the state of fully inverted spherical
shell that is established in the same region in the post buckling
regime, see also Fig. 6(b). Finally, the total force exerted on
the shell within the contact and transition zones is

F = FC + FTr ≈ (PG − PA) πL2 + q′2πL ∼ q′2πR0 sin θc,

q′ = q̂

(
kb
δA

`3

)
=

wcR0
√
δR0

∫
∂ŵ
∂n

dŝ, (31)

where the component of the force exerted in the transition
region is dominant in the Reissner and Pogorelov regimes
for which the load nearly vanishes in the contact region,
PG ∼ PA. In the above, kϕ � ks in the transition region, where
σ ∼ R0 sin θc � `. The shape of the shell in the transition
region is provided by solving the above Eqs. (30) and (31)
along with appropriate matching conditions with the contact
and outer regions.

Furthermore, as can be surmised by Eq. (30c), the in-plane
stress at the edge of the contact region is τŝŝ ∼ q̂. Based on the
standard solution of Eqs. (28) for the contact region43 where
negligible shear stress q is assumed, at the joining point with
the transition region, τss ∼ ρ/θc ∼ q̂, with ρ denoting the shell
deformation perpendicular to its axis of symmetry. At the same
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time, it can be easily seen that ρ∼ θc
2 at the edge of the contact

region for an initially spherical shell.43 As a result, q̂ ∼ θc

∼ wcR2
0/kb in order to accommodate the above relations and

the total force on the shell scales like θc
2 ∼ ∆z0/R0 = ∆/R0,

see also Eq. (31), which corroborates the linear response of the
f-d curve in the regime of flat contact. Reissner23 employed the
fourth order equations of the theory for shallow spherical shells
for rotationally symmetric stretching and bending subject to a
uniform load distribution around a small circular area around
the pole and obtained the following linear relation:

F =
4√

3
(
1 − ν2) Eh2

Ro
∆ or F = 8

√
χkb

∆

Ro
. (32)

In this limit, the shell is deformed around the pole where
it remains flat, whereas it is spherical in the outer part that is
free from load, thus identifying the Reissner solution with the
above-described linear regime.

Similarly, the structure of the static arrangement with dim-
pled shapes can be recovered by focusing on the bending and
stretching energy that develops within the transition region
as the external force further increases and large deformations
develop. As the compressive in-plane stresses at the intersec-
tion with the contact region increase, a threshold exists beyond
which crater formation is a preferred equilibrium state instead
of flattened shapes. In this fashion, compressive stresses are
relaxed and an inverse spherical shell emerges in the contact
region,57 see also Fig. 6(b). In this case, the disjoining pres-
sure exhibits significant deviation from zero only within the
transition layer where it develops an abrupt peak where almost
all bending takes place, Figs. 6(b) and 6(d). The formulation in
this region is similar to the case with flat shapes with the excep-
tion of the requirement for vanishing in-plane stress that has to
be substituted in the matching conditions to the region around
the pole. In the transition region, the dominant bending and
stretching strains are developed along the meridional direction
s that also determine the angle θc at the point where contact
is made with the cantilever, θc ∼ δ/`. In the same context
and using similar geometric scalings, Pogorelov24 suggested a
non-linear analytical expression for larger deformations when
buckling takes place,

F =


3.56E2h5(
1 − ν2)2R2

o

∆



0.5

, (33)

based on an energy minimization criterion in the region where
bending dominates. Alternatively, resorting to Eq. (31) for the
total force while accounting for the fact that δ/` ∼ θc and
wcR2

0/kb ≈ θc also provides an O(θc) dependence of the total
force in this regime. Combination of the transition from Reiss-
ner to Pogorelov regimes, as described via the above relations
(32) and (33), provides reliable estimates of Young’s modulus
(E) and shell thickness (h) of the shell coating for hard poly-
meric type MBs, e.g., polymer polylactide,25,26 that respond
in the manner illustrated by Fig. 6(a), based on simulated
and experimental f-d curves, without prior knowledge of the
thickness.26 Figure 9(a) provides such a successful parameter
estimation on the numerically obtained static response shown
in Fig. 6(a).

In the outer problem, lengths scale with the microbub-
ble radius, the disjoining pressure is negligible, and a
very similar version of the classic contact problem is
recovered,43,44,57

~n : PG − PA = ksτss + kϕτϕϕ −
1
σ

∂ (σq)
∂s

+ 2kmγBW , (34a)

~ts :
∂τss

∂s
+

1
σ

∂σ

∂s

(
τss − τϕϕ

)
+ ksq = 0, (34b)

q =
∂mss

∂s
+

mss

σ

∂σ

∂s
−
∂σ

∂s

mφφ

σ
, (34c)

PGVγ = PG0Vγ
0 , (34d)

coupled with symmetry conditions at the equatorial plane, the
kinematic condition on ẑ0, and matching conditions at the
joining point with the transition region,

s = ξ = 0 : z = 0,
dz
ds
= 0,

dσ
ds
= 1,

mss = msc


1 + O *

,

wcR2
0

kb

+
-


, ξ = 1: z = z0 (F = 0) − ∆z0,

dσ
ds
= 0. (35)

Distance ẑ0 is a more appropriate geometrical property
imposed on the outer problem than the angle of contact θc

since the latter is not as easy to measure in an experiment.
In classic solutions of the contact problem,43,44,57 angle θc

is used as a condition along with the dimensionless bending
moment msc = 1 + ν calculated within the flat contact region.

FIG. 9. Numerical F-∆ curves with
fitting in the linear (Reissner)
regime, non-linear curved downwards
(Pogorelov) regime, and the non-linear
(curved upwards) regime dominated
by gas compression. (a) χ = 51
N/m and kb = 3.4 × 10�15 N m(
k̂b = 3 × 10−5, P̂A = 3 × 10−3

)
and

(b) χ = 0.05 N/m and kb = 4.673 ×
10�16 N m

(
k̂b = 4.2 × 10−2, P̂A = 3

)
.
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In view of the above, it can be seen that such solutions con-
stitute an outer problem of the contact configuration that is
valid in cases for which the interaction potential is negligi-
ble, wcR2

0/kb � 1. As a result, the bending moments are not
significantly modified within the transition layer, the latter is
absorbed in the outer region, and the flat contact region is in
direct contact with the outer one.

Experimental29 and numerical f-d curves for microbub-
bles covered with a soft lipid monolayer exhibit a very different
response pattern. Initially the response is linear, but the tran-
sition to Pogorelov type response is bypassed by a curved
upwards regime dominated by gas compression as indicated
by the numerical simulations obtained in the present study,
see also Fig. 7(a). Furthermore the shape of the microbubble
does not exhibit crater formation as the external load increases.
Rather, the MB shape remains flat with a progressively increas-
ing contact region, Fig. 7(b). Consequently, it is expected that
using the above-mentioned transition from the Reissner to
Pogorelov type response for soft shells will not provide reliable
estimates of their elastic properties. However, as indicated by
the simulations and illustrated via the distribution of the dis-
joining pressure, Fig. 7(d), the linear Reissner regime does
exist for small deformations for which compressive in-plane
stresses in the contact region are not prohibitive energetically.
The curved upwards regime is associated with the onset of con-
siderable rise in the internal gas pressure and a concomitant

uniform reduction in the film thickness in order to accommo-
date the balance in the contact region; this is verified by the
evolution of the disjoining pressure and energy distribution
among the different components, Figs. 7(c) and 7(d). When
gas compressibility is of central importance in the response of
coated bubbles to external forcing, it is the balance between
pressure drop across the interface and in-plane stresses in the
main part of the shell that determine the f-d curve.20,21 Pro-
ceeding along the same lines as these earlier studies, in the
analysis presented below, we obtain an asymptotic relation for
the force exerted on the symmetrically compressed microbub-
ble depicted in Fig. 8, as a function of deformation. Assuming
a relatively weak interaction potential, we treat the bubble as
almost spherical in this process, at least for not very large loads.

In the absence of an initial pre-stress, the shell is taken to
be spherical with pressure P0 equal with the external pressure,
PA, and volume, V0 = 4πR3

0/3. Assuming that the contact
length L ≈ R0 sin θc, Fig. 8, is smaller than the initial MB
radius, i.e., θc relatively small, but larger than the size of the
transition layer, L � `, and that the shell remains shallow,
∆ � z0 � ∆z0, we obtain the following estimate for the shell
volume when it is inflated at the equator, R = R0 + δR, due to
the external force and at the same time it is flattened at the two
poles. In the last two regions, the shell volume is decreased
by an amount equal to the volume of two spherical sectors of
radius R and angle θc, in which case the total volume reads as

V =
4πR3

3

[
1 −

3
2

cos θc +
cos3θc

2

]
Isothermal Compression
−−−−−−−−−−−−−−−−−→

θc small
PG =

PA

1 − 3θ4
c

(
1
8 − λ

) δR/R0 ≡ λθ
4
c . (36)

Next, treating the shell as neo-Hookean with negligible bend-
ing in the outer region and an almost spherical shape, we obtain
the following force balance:

PG − PA ≈
2χ
R

*
,

R2

R2
0

− 1+
-
≈

2χ

R0
(
1 + λθ4) [(

1 + λθ4
)2
− 1

]

≈ λ
4χ
R0

θ4. (37)

Upon combining the last two equations, we recover the
following relation for λ and the pressure drop across the
shell:

λ =
1
8

1(
4χ

3R0P0
+ 1

) , PG − PA = 3PAθ
4
(

1
8
− λ

)
. (38)

In this fashion, the force exerted on the shell at the contact
region reads as

FC = (PG − PA) πL2 ≈ (PG − PA) πR2
0sin2θ

θ small
−−−−−→ FC ≈ 3θ6πR2

0P0

(
1
8
− λ

)
(38)
−−−→

FC ≈ θ
6πR2

0P0
3
8

*.
,
1 −

1
4χ

3R0P0
+ 1

+/
-

χ/(R0P0)�1
−−−−−−−−−→ Fc ≈ πR0 χ

θ6
c

2

∆
R0
∼
θ2

c
2

−−−−−→ Fc ≈
4π χ

R2
0

∆
3,

(39)

χ =
F

∆3

R2
0

4π
. (40)

Equation (40) was obtained by Lulevich et al.,20 when the
Poisson ratio is set to ν = 0.5 and an incompressible capsule

is treated rather than a bubble. Equation (39) is valid for a
coated microbubble, χ/(P0R0) ∼ 1, in the regime for which
the dominant part of the load arises as a repulsive force in the
contact region due to the thinning of the water film, instead of
the transition layer.
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Based on the above analysis, it is proposed that Reiss-
ner’s linear formula, which holds when the force on the
shell is balanced by bending stresses in the transition region,
can be combined with the above formula, in order to pro-
vide reliable estimates of the shell area dilatation modulus
and bending stiffness without employing the concept of a
shell thickness. Figure 9(b) provides a comparison between
numerical simulations of the f-d curve and the combina-
tion of formulas (32) and (39) calculated with the same area
dilatation and bending modulus, χ = 0.015 N/m, kb = 1.558
× 10�15 Nm, pertaining to a soft MB with R0 = 1.5 µm,
w0 = 10�4 N/m, δA = 12.5 nm, γ = 1.07, and γBW = 0.
Alternatively, fitting formulas (32) and (39) on the simulated
f-d curve provides very similar values for the area dilatation
and bending modulus with those used in the simulation. It
is anticipated that this procedure can also be successfully
applied on experimental f-d curves obtained for polymeric and
phospholipid shells, but this investigation is left for a future
study.

V. RESULTS AND DISCUSSION

In this section, we present an extensive parametric study
on the response of coated microbubbles covering a wide range
of the dimensionless parameters, primarily the dimension-
less bending resistance and resistance to gas compression,
k̂b, P̂A, but also the dimensionless intermolecular and surface
tension forces, Ŵ0, γ̂BW . We eventually intend to simulate
afm experiments involving microbubbles covered with poly-
meric and phospholipid shells, which are biomaterials very
often used in medical applications and respond very differ-
ently under the compression from a flat surface due to their
different elastic properties. Based on preliminary analysis26

of afm measurements25,29 of both types of shells, polymeric
shells are characterized by a much larger area dilatation mod-
ulus than lipid shells, e.g., χ = Eh ≈ 5-150 N/m, and bending
stiffness kb varying between 10�15 and 10�18 Nm for a stress
free radius R0 on the order 2 µm’s, whereas lipid shells are
softer, e.g., χ = Eh ≈ 0.01-0.1 N/m. A typical set of physical
parameter values for a polymeric shell is provided in the lit-
erature for microbubbles coated with a polylactide shell25,26

that follows a neo-Hookean constitutive law; R0 = 1.5 µm,
E = 2.1 GPa, h = 25 nm, ν = 0.5, γBW = 0 N/m, γ = 1.07,
w0 = 10�4 N/m, and δA = 50 nm, setting the dimensionless
parameters to k̂b = 3 × 10−5, P̂A = 3 × 10−3, γ̂BW = 0, Ŵ0 =

2 × 10−6, and χ̂ = 1. For the case of a lipid shell, indicative
physical parameter values are provided in the literature29 for
a phospholipid monolayer shell obeying the Mooney-Rivlin
constitutive law with b = 1; R0 = 1.5 µm, χ = 0.05 N/m, kb = 3
× 10�16 Nm, ν = 0.5, γBW = 0 N/m, γ = 1.07, w0 = 10�4 N/m,
and δA = 50 nm, thus setting the dimensionless parameter val-
ues to k̂b = 2.7 × 10−3, P̂A = 3, γ̂BW = 0, Ŵ0 = 2 × 10−3. To
accommodate such a wide variation of physical constants, the
area dilatation modulus primarily, we employ P̂A values rang-
ing between 10�4 and 3 as a means to distinguish between the
response patterns that characterize polymeric and lipid shells,
respectively, for micron size MBs in an atmospheric pressure
environment. Similarly the effect of dimensionless bending
stiffness, k̂b, is investigated in the range between 2 × 10�6 and

2 × 10�2, whereas Ŵ0 and γ̂BW are initially set to 2 × 10�6

and 0, respectively, and allowed to increase from these values
onwards.

A. Parametric study for hard shells, P̂A � 1

We perform an extensive parametric study, employing our
novel methodology that introduces intermolecular forces as a
means to obtain the load distribution, varying the relative resis-
tance between gas compression and strain, P̂A = (PAR0) /χ.
Very small values of P̂A � 1 are tested denoting hard shells
with large area dilatation modulus χ� 1. Once parameter P̂A is
fixed, parameter k̂b = kb/

(
χR2

0

)
is varied thus fixing the shell

bending resistance, kb. A weak interaction force with the can-
tilever is prescribed as a starting point of the parametric study,
Ŵ0 = w0/χ = 2 × 10−6, with negligible interfacial tension,
γ̂BW = 0.

In this fashion, setting P̂A to 3 × 10�3 and 3 × 10�4

while employing Hooke’s law for the shell, a rich response
pattern is revealed as we gradually increase the bending resis-
tance, k̂b, reflecting the interplay between the three major
stiffnesses, i.e., resistance to straining, bending, and gas com-
pression; the resistance to compression of the ultrathin film
between the shell and cantilever is negligible. As can be
gleaned from Figs. 10(a) and 10(b), for such hard shells,
the f-d curve exhibits the standard pattern of linear, Reiss-
ner, response followed by the nonlinear, Pogorelov, regime,
indicating the buckling transition as a means to relax exces-
sive compressive straining. As a result, the force required to
achieve a certain deformation increases in a milder fashion
than in the linear regime. This response pattern in the f-d
curve is reflected in the transition from flat to dimpled shells
in the region around the pole, see also Fig. 6(b). One more
interesting aspect of this simulation is the distribution of the
disjoining pressure, Figs. 6(c) and 6(d). In the linear regime
of flattened shapes around the pole region, the load is essen-
tially applied at the end of the contact area as we have already
seen in the benchmark calculations, Fig. 6(c). When buckling
takes place, the pressure is essentially applied around a ring
in the dimple region of the deformed shape, Fig. 6(d). Eventu-
ally, as the distance between the shell and cantilever is further
decreased, the exerted force increases significantly and the
f-d curve curves upwards indicating the fact that the resistance
to volume compression dominates the response. In the linear
and curved downwards regime, volume reduction is negligi-
ble, but at high deformations, the shell shrinks significantly
and consequently the internal pressure becomes an important
additional stiffness in the equilibrium increasing the required
force for deformation. The above three regimes detected in
the f-d curve can also be represented by the relative impor-
tance of the individual energy components, Figs. 6(e)–6(g).
In the linear regime, the main balance is between the elastic
energies (stretching ∼ bending), with stretching represent-
ing the dominant component, Fig. 6(f). After the buckling
point, it is elastic effects that control the total response,
but we observe an exchange in the relative importance in
favor of bending, Fig. 6(f). This happens because in the
buckling stage we have an almost reversed spherical cup
in the contact area that significantly reduces the extent of
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FIG. 10. Parametric study for the effect
of dimensionless bending modulus
k̂b in dimensionless force-deformation
curves when (a) P̂A = 3 × 10−3 and (b)
P̂A = 3× 10−4. Evolution of (c) shapes,
(d) dimensionless energy components
Ŵi as a function of dimensionless defor-
mation d̂, and [(e) and (f)] dimen-
sionless disjoining pressure profiles Π̂
along the radial coordinate σ, when
P̂A = 3 × 10−4 and k̂b = 2.7 × 10−2.

compression while increasing the bending strains. Finally, at
large deformations, the energy due to gas compression starts
to increase becoming of the same order as the elastic ener-
gies, Fig. 6(g). This is directly reflected in the f-d curve with
the curved upwards response in the same regime of large
deformations.

It should be noted that in the f-d curves of Figs. 10(a)
and 10(b) the external force is scaled against (χkb)1/2 in order
to clearly illustrate the extent of validity of the Reissner regime.
Based on classical mechanics,23 the dimensionless force

F̂ = F/(χkb)1/2 has a fixed slope 8, with Poisson ratio ν set to
0.5, when plotted against relative deformation d̂ = ∆/R0, see
also Eq. (32).

Furthermore, the linear regime is valid until relative defor-
mation, d̂, is on the order of 2.5 h/R0, a result that can be easily
verified when the resistance to gas compression is negligible,
P̂A � 1, upon inspection of Figs. 10(a) and 10(b). In addition,
as we gradually increase the dimensionless bending modulus,
i.e., k̂b = 3 × 10−4, 3 × 10−3, and 3 × 10−2, corresponding
to a progressively thicker shell, while keeping the rest of the
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numbers the same as in Fig. 6(a), the validity of the Reiss-
ner regime is extended and the buckling point is shifted
toward higher values of the dimensionless force and defor-
mation. In particular, a shell with higher bending modulus,
k̂b = 3 × 10−4, only exhibits the transition from the Reiss-
ner to Pogorelov regime and the internal pressure does not
affect the response as much since the shell is able to store
more bending energy that controls the buckling (Pogorelov)
regime. Further increase in the shell thickness, k̂b = 3 × 10−3,
eliminates the post-buckling regime, and the shell exhibits
a linear response for the entire range of practically attain-
able deformations. This reflects the fact that bending becomes
very energy consuming in this case, and consequently,
in order for the shell to minimize its total energy, it
remains in the linear regime where stretching is energetically
favorable.

When the area dilatation modulus increases, P̂A = 3
× 10−4, buckling occurs for a smaller external force for
the same shell thickness. However, the range of validity
of the Reissner regime still conforms with the 2.5 h/R0

≈ 7.5(kb/χ/R0
2)1/2 rule when ν = 0.5. Consequently, in the

rescaled variables used in Figs. 10(a) and 10(b), the location
of the buckling point remains the same for the same relative
bending stiffness k̂b, as can be gleaned from the above panels.
Eventually the f-d curve exhibits the curved upwards regime of
dominant gas compression that is now observed at much larger
deformations in comparison with Fig. 10(a) and the same k̂b

value. This is a result of the decreased relative resistance to gas
compression and the resulting requirement of a larger com-
pression in order to produce a significant effect in the energy
balance. The shape for k̂b = 2.7 × 10−2 and P̂A = 3 × 10−4

remains flattened for all the range of deformations as the bend-
ing stiffness is dominant, Figs. 10(c) and 10(d). The slightly
curved upwards response of this f-d curve is accompanied with
deviation from sphericity at relatively high deformations in
the outer part of the shell, as the length of the contact region
approaches the microbubble radius. The above pattern is cor-
roborated by the plot of the disjoining pressure, in which the
linear regime exhibits a distribution that is concentrated at the
pole region, whereas in the curved upwards part the loading is
extended over a larger portion of the contact region, Figs. 10(e)
and 10(f).

The parameter that controls adhesion between the MB
and the cantilever was set to a quite low value, (w0 =
10�4 N/m), indicating that the interaction is weak, based
on preliminary simulations against available f-d curves from
afm measurements. In general, however, the case of strong
adhesion is also possible depending on the shell material. In
this case, the point of zeroforce does not necessarily corre-
spond to an almost spherical undeformed shape. The simula-
tion via the intermolecular forces captures the stable response
pattern whether that involves buckling or just a prolonged
Reissner type response, and this constitutes a powerful tool
for simulating contact problems for a wide range of configu-
rations. In particular, by increasing the adhesion parameter,
i.e., setting w0 to 10�1 N/m which gives Ŵ0 = 2 × 10−3,
and keeping the rest of parameters the same as in Fig. 10(a),
buckling is postponed to higher values of force and defor-
mation, Fig. 11(a), or even buckling is bypassed, Fig. 11(b).
This is because the adhesive force stabilizes the shell in contact
with the cantilever and relaxes the compressive elastic tensions
responsible for buckling. In the case of panel (11b), the shell
thickness renders buckling energetically unfavorable. Conse-
quently, maintaining a nearly flat contact region provides the
energy reduction required for energy minimization of the shell.

The above aspects of the equilibrium subject to strong
adhesion are portrayed in Figs. 12 and 13, showing the pre-
dominance of flat shapes over a longer deformation range
before buckling takes place in Fig. 12(a) and the elimina-
tion of buckling for the thicker shell studied in Fig. 13(a).
In both cases, energy reduction as a result of strong inter-
action with the cantilever postpones or even removes buck-
ling as a means of energy redistribution, Figs. 12(b), 12(c),
and 13(b). In particular, the evolution of the disjoining pressure
with increasing relative deformation, registered for relatively
thick shells with k̂b = 3 × 10−4, extends the range of typical
linear response with the load concentrated at the edge of the
flat contact region where a gradual thinning of the intermediate
water film is captured, Fig. 13(c). Deviations from sphericity
and the onset of bending in the outer shell region in both the
above cases produce a different slope in the linear part of the
f-d curves.

It should also be noted that when the thinner shell is
interrogated the solution follows the linear-flat regime beyond

FIG. 11. Effect of the characteristic
adhesive energy (w0) on the dimen-
sionless f-d curve when (a) k̂b = 3 ×
10−5, P̂A = 3 × 10−3 and (b) k̂b =

3 × 10−4, P̂A = 3 × 10−3.
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FIG. 12. Evolution of the (a) shapes
for indicative solutions, (b) dimension-
less total energy ÛT as a function of
dimensionless deformation d̂, (c) energy
distribution among the different com-
ponents Ŵi as a function of defor-
mation d̂, (d) dimensionless F̂ as a
function of dimensionless distance ẑ0,
and [(e) and (f)] evolution of dimen-
sionless disjoining pressure profiles Π̂
as a function of deformation. The sim-
ulation parameters are k̂b = 3 × 10−5,
P̂A = 3 × 10−3, Ŵ0 = 2 × 10−3. The
solutions with the same relative defor-
mation

(
d̂ = 0.05

)
correspond to points

of the pre- and post-buckling branches
of Fig. 11 for the strong adhesion case.

the critical deformation for which buckling occurs until after
a limit point, at d̂ = 0.07 and F̂ = 2.5, it turns down to lower
deformations until at d̂ = 0.03 and F̂ = 0.71 it exhibits the
buckling instability. From the buckling threshold onwards, it
follows the classic buckling regime as predicted by earlier
studies where multiplicity of solutions was also observed.43,57

The multiplicity observed in Fig. 11(a) reflects the loss of sta-
bility of the linear branch, as it is characterized by higher
total energy after the buckling point, see also Fig. 12(b).
Eventually, the post-buckling branch is also expected to

become unstable as it exhibits a negative slope in the f-d
curve.

Finally, the increase in adhesion parameter affects the
maximum attraction or pull-off force from the cantilever,
which now occurs after a more complex pattern in the
translation of the cantilever with respect to the shell, see also
Figs. 12(d) and 13(d), and corresponds to a deformed shape
depending on the strength of the interaction. This is a common
aspect of hard and soft shells and will be demonstrated in more
detail in Sec. V B.



030711-20 A. Lytra and N. Pelekasis Phys. Fluids 30, 030711 (2018)

FIG. 13. Evolution of the (a) shapes,
(b) dimensionless energy components
Ŵi as a function of dimensionless defor-
mation d̂, (c) dimensionless disjoining
pressure profiles Π̂ as a function of the
radial coordinate σ for indicative solu-
tions, and (d) dimensionless force F̂ as
a function of dimensionless distance ẑ0.
The simulation parameters are k̂b = 3 ×
10−4, P̂A = 3 × 10−3, Ŵ0 = 2 × 10−3.

B. Parametric study for soft shells, P̂A ∼ 1

In order to examine the static response of soft shells, we
set P̂A = 3 indicating a small area dilatation modulus and
Ŵ0 = 2 × 10−3 for a weak shell-cantilever interaction
while gradually increasing the bending stiffness via k̂b.
The simulated f-d curve obtained in this fashion differs signifi-
cantly in comparison with MBs covered with hard shells. More
specifically, the response initially follows a linear path, but the
transition to a non-linear curved downwards regime of buck-
led shapes is bypassed directly to the gas dominated regime,
see also Fig. 7(a). The shape of the microbubble remains flat
without buckling taking place in the contact region, Fig. 7(b).
As a result, there was no exchange of energies due to stretching
and bending and the Reissner dimensionless slope of nearly 8
was recovered throughout the linear regime. Rather, stretching
energy remains the dominant energy component of the equi-
librium, Fig. 7(c), for the entire range of relative deformations
examined. Moreover, it can be easily noted that the rise of the
energy due to gas compression is reflected on the transition
from the linear to the non-linear curved upwards response in
the f-d curve for∆/R0 ≥ 0.2 as a manifestation of the dominant
balance between external overpressure and compressive strain
in the main part of the shell that remains nearly spherical in
this non-linear regime. The disjoining pressure profiles also
follow a different response pattern in comparison with hard

shells. In the linear regime, they exhibit a flat distribution of
low values with a positive peak at the edge of the contact region
where the distance from the cantilever decreases resembling
a point load that is gradually being displaced from the pole,
Fig. 7(d). The outer part of the shell that is at a relatively high
distance has zero loading, and therefore, no interaction with
the cantilever exists there. As the external force increases, the
interaction force initially decreases in the pole region as the
contact region extends further out. However, instead of reach-
ing zero, indicating the commencement of buckling around
the pole region, it starts increasing thus designating a progres-
sive thinning of the film that results in additional repulsion,
Fig. 7(d). In order to maintain the normal force balance in the
contact region, the shell is compressed and its internal pres-
sure increases signifying the onset of the nonlinear regime
in the f-d curve. This transition takes place at, roughly, rela-
tive deformation ∆/R0 ≈ 0.2 for which the component of the
interaction force that pertains to the contact region becomes
dominant, Eq. (31), leading to the nonlinear force deformation
curve described in Eq. (39). Figures 14(a) and 14(b) illustrate
the effect of increasing bending resistance on the above pattern
setting k̂b = 2.7×10−5, 2.7×10−4, 2.7×10−3, and 2.7×10−2,
with P̂A set to 0.3 and 3, respectively, while the rest of the
parameters remain the same as in Fig. 7. As can be gleaned
from the above figures, even for the smallest value of k̂b, the
f-d curve maintains the transition from the Reissner regime
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FIG. 14. Effect of dimensionless bend-
ing modulus k̂b in dimensionless force-
deformation curves when (a) P̂A = 0.3
and (b) P̂A = 3. Evolution of (c) shapes,
(d) dimensionless energy components
Ŵi as a function of dimensionless defor-
mation d̂, and (e) dimensionless disjoin-
ing pressure profiles along the radial
coordinate σ for indicative solutions,
when P̂A = 3, k̂b = 2.7 × 10−5, and
Ŵ0 = 2 × 10−3.

to a gas dominated regime, indicating that when the inter-
nal pressure is comparable to elasticity

(
P̂A ∼ 1

)
a new pat-

tern is defined, which changes the classic response, shown in
Figs. 6 and 10. Hence, in contrast with similar shells which
have the same dimensionless bending modulus, here gas com-
pressibility acts as an extra rigidity that bypasses buckling.
In addition, as the bending modulus increases, the validity
of the linear (or Reissner) regime is extended toward larger
deformations maintaining the standard dimensionless slope of

8 when ν = 0.5. On the contrary for a shell characterized with
lower bending resistance, the onset of non-linearity due to gas
compression becomes dominant earlier since bending strain
is no longer a sufficient source of energy. It should also be
stressed that for shells with very low bending stiffness, e.g.,
k̂b = 2.7×10−5, and area dilatation modulus, e.g., P̂A = 3, both
nonlinearity and deviation from sphericity arrive for very low
deformations, see also Figs. 14(a) and 14(b), and as a result,
quite elongated compressed shells are obtained that do not
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exhibit a well-defined Reissner regime nor do they follow
the cubic nonlinear response of Eq. (39). Figure 14(c) illus-
trates the shell shape in the above parameter range indicating
flat shapes that exhibit repulsion in the contact region due to
progressive thinning of the intervening film. Adhesion consti-
tutes a significant resistance to the cantilever translation, and
this reflects in the energy distribution shown in Fig. 14(d),
where now stretching dominates over gas compression and
bending, leading to an almost linear response albeit with a
different slope due to extensive elongation. Furthermore, the
disjoining pressure early on develops a strong plateau in the
contact region, Fig. 14(e), signifying the onset of significant
gas compression. However, this is a rather marginal behav-
ior, and for a wide parameter range, see also Figs. 14(a)
and 14(b), the pattern of the linear Reissner response fol-
lowed by the cubic curved upwards response accurately
describes the simulated f-d curves. The onset of nonlinearity
depends on the relative importance of resistances to bend-
ing and gas compression, but eventually the cubic response is
recovered.

As was illustrated by the simulations conducted on MBs
coated by a hard shell, a strongly adhered MB requires higher
force for deformation while buckling is either postponed or
bypassed, see also Figs. 11–13. In the case of soft shells pre-
sented in this subsection, buckling phenomena were not cap-
tured; nevertheless, increasing the interaction potential, Ŵ0,
increases the required force for a certain deformation to be
achieved as well. Figure 15(a) demonstrates how the f-d curve
changes for increasing value of the adhesive energy per unit
area, w0. The lowest value of w0 = 10�5 N/m, corresponding
to Ŵ0 = w0/χ = 10−5/0.05 = 2× 10−4, does not significantly
differ from the 10�4 N/m case, and the resulting adhesive force
at maximal attraction is almost zero, see also the embedded dia-
gram in Fig. 15(a). On the other hand, when w0 = 10�3 N/m,
i.e., Ŵ0 = 2 × 10−2, not only is the repulsive force higher,
but also the magnitude of maximum attraction increases sig-
nificantly. In Fig. 15(b), the f-d curves pertaining to the case
of strong adhesion, Ŵ0 = 2 × 10−2 and Ŵ0 = 5 × 10−2, are
compared against the f-d curve obtained for weak adhesion
when Ŵ0 = 2 × 10−3. The trend is again the same, and the
maximum attractive force is now much larger. Both effects are

due to the stronger interaction between the shell and cantilever
that generates significantly larger forces for the same distance
between the cantilever and shell center of mass. In addition, the
increase of w0 leads to f-d curves where the relative position
of the cantilever and shell is not a monotonically decreasing
function. Thus, arc-length continuation is the most appropriate
way to proceed with the numerical evaluation of f-d diagrams,
in the regime for which attractive forces prevail between the
shell and cantilever.

In this fashion, continuation to small cantilever-shell sep-
arations occurs through the onset of two limit points that
generate a hysteresis loop. It corresponds to the pull-off force
required to equilibrate the strong adhesive force exerted on
the shell by the cantilever. As w0 increases, the attraction
is stronger; hence, the shape that corresponds to the onset
of repulsion is gradually more deformed in the pole area,
as can be gleaned from panels (16a) and (17a) showing the
evolution of shape with increasing external force for pro-
gressively larger adhesion. During attraction and repulsion,
the shape of microbubbles for w0 in the interval between
Ŵ0 = 2 × 10−2 and 5 × 10−2 is characterized by obtuse wet-
ting angles. However, in the case of strongest adhesion, the
wetting angle is close to 90◦; the values of relative deforma-
tion in Figs. 16 and 17 corresponding to each of the deformed
shapes shown refer to the equivalent point in the f-d curve.
As w0 increases, the calculated deformations differ signif-
icantly in the sense that they are based on the location of
the pole in the reference configuration that registers a zero
force. When the adhesion is strong, a zero force does not
correspond to a spherical shape. On the contrary, the posi-
tion of the pole is significantly deformed; hence, the resulting
deformation differs from the actual pole displacement. During
afm experiments, adhesion is typically small. As a result, the
measured deformation is very close to the pole displacement
from its position corresponding to the spherical configuration.
Consequently the model proposed in the present study that
incorporates the interaction potential constitutes a promising
alternative for obtaining the load distribution and simulating
the static response of shells during contact experiments. In par-
ticular, identifying the maximal attraction during an afm exper-
iment, or equivalently the pull-off force required to separate

FIG. 15. [(a) and (b)] Effect of adhesive
per unit area energy

(
Ŵ0

)
in dimension-

less f-d curves. Comparison between (a)
weak Ŵ0 = 2 × 10−4, 2 × 10−3 and (b)
strong Ŵ0 = 5×10−2, 2×10−2 adhesion
cases. The rest of simulation parameters
are P̂A = 3 and k̂b = 2.7 × 10−3 for all
of the curves.
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them, provides a reliable means to estimate the interaction
potential between the shell and cantilever. This can be com-
bined with the evolution of the f-d curve in order to provide
estimates of the shell area dilatation and bending stiffness.
A preliminary study based on a standard methodology with
a point load26 does not accurately reproduce experimental f-d
measurements in the buckled regime and in the regime of dom-
inant gas compression. Therefore, application of the present
model to this end is a promising alternative that is left for a
future study.

Another important aspect of the static response as the
interaction potential increases pertains to the details of the f-d
curve and the associated shapes and load distribution on the
shell. As illustrated by Figs. 15(a) and 15(b), for increasing val-
ues of the interaction potential, the f-d curve exhibits a gradual
deviation from the Reissner slope while the ensuing nonlin-
ear curved upwards regime weakens in favor of a quadratic,
Fig. 15(a), or almost linear response pattern, Fig. 15(b), with
a larger slope than the one predicted for the classical Reissner
regime. As can be surmised based on Figs. 16 and 17, this
tendency is a result of the increased resistance to film thin-
ning with increasing adhesion of the shell on the cantilever
and the corresponding tendency of continuous elongation of
the contact region as opposed to increasing gas compression.
In particular, Figs. 16(b) and 17(b) show the energy distribu-
tion where the increased importance of gas-compression over

bending but, primarily, the dominant effect of stretching and
interaction potential is evident in this process. Furthermore,
the distribution of disjoining pressure is shown in Figs. 16(c)
and 17(c) as a function of increasing relative deformation,
where it is seen that the contribution from the transition layer
is subdominant to that from the contact region. In particular,
there is a competition between the increase in the repulsive
force through thinning of the film in the contact region and
via elongation of the contact region. The former results in gas
compression and compression of the main part of the shell,
and it is also responsible for the cubic dependence of the
force on deformation. The latter results in the intensifica-
tion of the in-plane compressive stresses in the contact region
and is responsible for the linear dependence of the force on
deformation. As the interaction potential increases, the lat-
ter component dominates, thus generating a linear response
pattern with a larger slope than the Reissner regime due
to the increased deviation from sphericity as a result of
the progressive elongation of the contact region. This effect
was pointed out in the section dedicated to the asymptotic
structure of the solution depending on the dominant force
balance, where the shear stress resultant in the transition
region determines the compressive in-plane stress at the junc-
tion between the transition and contact regions and subse-
quently produces the linear dependence on the deformation.
This is especially true in Fig. 17(c) where the load almost

FIG. 16. Evolution of (a) shapes, (b)
dimensionless energy components Ŵi as
a function of dimensionless deforma-
tion d̂, and (c) dimensionless disjoin-
ing pressure profiles Π̂ as a function of
the radial coordinate σ for different val-
ues of deformation, which correspond to
strong adhesion. The simulation param-
eters are k̂b = 2.7 × 10−3, P̂A = 3,
Ŵ0 = 2 × 10−2.
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FIG. 17. Evolution of (a) shapes, (b)
dimensionless energy components Ŵi as
a function of dimensionless deforma-
tion d̂, and (c) dimensionless disjoin-
ing pressure profiles Π̂ as a function
of radial coordinate σ for different val-
ues of deformation, which correspond to
strong adhesion. The simulation param-
eters are k̂b = 2.7 × 10−3; P̂A = 3,
Ŵ0 = 5 × 10−2.

vanishes in the contact region due to the very large interac-
tion potential. Consequently, a very narrow load distribution
emerges at the edge of the contact region, in a fashion that
is similar to the Reissner regime that gives rise to a linear
response in the f-d curve. As was discussed in the context of
the response of hard shells this trend was a recurring theme
in the present study, whenever a linear response pattern was
revealed by the simulations with significant deviations from
the Reissner slope.

AFM experiments and clinical applications of MBs are
performed in an aqueous environment; thus, surface tension
between the shell coating and water is a parameter that requires
investigation, especially when we wish to characterize the
nature of the coating, i.e., if it is a viscoelastic solid or liquid.
In addition, consideration of surface tension even for a solid
coating might simulate possible defects on the shell, like holes,
where we have a gas-water interface. The static response of
coated MBs is mainly investigated in the context of classic shell
mechanics,23,47 where the surface tension is not accounted
for. In a recent study59 on the synthesis and development of
MBs covered with phospholipid monolayers, it was reported
that the surface tension of such coatings is very small or
even near zero, γBW ∼ 10�3 N/m, while an older study60

also suggested that surface tension in lipid monolayer mem-
branes is around 10�3 N/m. We consider two cases here with
γBW = 4 × 10�3 and 4 × 10�2 N/m, i.e., γ̂BW = 8 × 10−2

and 8× 10−1, for our simulation and the rest of parameters the
same as in Fig. 7. Figure 18 demonstrates that surface ten-
sion significantly increases the required force for the same

FIG. 18. Dimensionless force F̂ as a function of dimensionless deformation
d̂ for different values of dimensionless surface tension γ̂BW . The rest of the
simulation parameters are k̂b = 2.7 × 10−3, P̂A = 3, Ŵ0 = 2 × 10−3.
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deformation or, alternatively, surface tension adds an extra
resistance on the shell. In particular, surface tension is an
isotropic property that acts on the shell along with the in-
plane stresses τss and τϕϕ, which depend on the direction.
Thus, surface tension could be interpreted as the isotropic
part of the in-plane stress tensor. This argument implies that
surface energy consists of an isotropic part, namely, surface
tension, and the purely elastic part that depends on the extent
of local deformation. In addition, Eqs. (20) imply that when
the shell/liquid interface is characterized by surface tension
the gas pressure is higher than the ambient by the term of
2γBW km, i.e., the capillary pressure. The latter introduces an
additional stiffness component in the interfacial force balance
and renders gas compression a more energy consuming part
in the equilibrium process; see also Fig. 19(b) where the rela-
tive importance of the different energy components is plotted
against relative deformation when γ̂BW = 8 × 10−2. As a
result, the validity of the Reissner regime shrinks within a
smaller window of relative deformations; see also the f-d curve
in Fig. 18 for the case with γ̂BW = 8 × 10−2 exhibiting a
cubic response pattern for large deformations. Figures 19(a)–
19(c) corroborate this behavior in the evolution of the shell
shape, energy distribution, and disjoining pressure in a man-
ner that is similar to the case with γBW = 0 shown in Fig. 7
but with larger contribution to total energy due to volume
compression.

Finally, the static response pattern for an even larger value
of surface tension, γ̂BW = 8 × 10−1, is shown in terms of the
f-d curve in Fig. 18 and the evolution of the shape, energy,
and load distribution with relative deformation is shown in
Figs. 20(a)–20(c). The registered response pattern resembles
the one obtained with increasing interaction potential where
an almost flat and repulsive disjoining pressure distribution
develops in the contact region as can be verified by cross-
examining Figs. 17(c) and 20(c). In the latter graph, a strong
and almost flat repulsive force is registered within the con-
tact region, even at nearly zero deformation, as a result of the
capillary pressure of the microbubble. This is in contrast to the
almost point load distribution obtained in the case presented in
Fig. 17(c) leading to a linear f-d curve, at least in the initial part
before the resistance to volume compression dominates shell
rigidity. It is due to the dominant resistance to film thinning
that is exhibited by the shell when surface tension increases,
which enhances elongation of the contact region instead of vol-
ume compression, see also Fig. 20(a), and the corresponding
stretching and potential vs gas compression components in the
energy distribution, Fig. 20(b). In this fashion, the f-d curve
assumes an almost quadratic or even linear form depending on
the ratio between surface tension and area dilatation, Fig. 18.
This is a pattern that distinguishes shells with significant sur-
face tension from purely elastic shells and may play a role in
the estimation of their mechanical properties.

FIG. 19. Evolution of (a) shapes, (b)
dimensionless energy components Ŵi
(the energy due to surface tension, Ŵs,
is on the right axis) as a function of
dimensionless deformation d̂, and (c)
dimensionless disjoining pressure pro-
files Π̂ as a function of the radial
coordinate σ for different values of
deformation. The simulation parameters
are k̂b = 2.7 × 10−3, P̂A = 3,
Ŵ0 = 2 × 10−3, γ̂BW = 8 × 10−2.
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FIG. 20. Evolution of (a) shapes, (b)
dimensionless energy components Ŵi
(the energy due to surface tension, Ŵs,
is on the right axis) as a function of
dimensionless deformation d̂, and (c)
dimensionless disjoining pressure pro-
files Π̂ as a function of the radial
coordinate σ for different values of
deformation. The simulation parameters
are k̂b = 2.7 × 10−3, P̂A = 3,
Ŵ0 = 2 × 10−3, γ̂BW = 8 × 10−1.

VI. CONCLUDING REMARKS

A novel methodology was developed for the investigation
of the static response of coated microbubbles that are com-
pressed by two rigid planes. Ultimately it is desired to simulate
afm measurements on microbubbles coated with hard poly-
meric or soft phospholipid shells in order to recover the elastic
properties of the shell. In both cases, due to the hydrophilic
nature of the involved surfaces, an ultrathin aqueous film sepa-
rates the shell from the cantilever that acts as a mediator of the
load exerted by the latter on the former surface. The intensity
of this interaction is very important for the type of response
that will be observed, and in the present study, it is modeled
via a long range attractive, short range repulsive potential that
gives rise to a disjoining pressure that repels the shell interface
as the distance from the cantilever decreases below a charac-
teristic length scale. In this fashion, a smooth load distribution
is generated that allowed us to capture a wide range of dif-
ferent response patterns. Stretching strains are also accounted
for in the context of Hookean and strain softening constitutive
laws, the latter introducing nonlinearity in the static response
by hardening the shell material at compression, and bending
strains via a linear relationship that relates the curvature at
rest and during deformation. Finally, gas compressibility and
shell/liquid interfacial tension are also introduced in order to
complete the set of stiffnesses that comprise the microbub-
ble’s resistance to deformation during equilibrium. The finite

element methodology with b-cubic splines as basis functions,
in order to accommodate bending strains, is applied for captur-
ing shell deformation at external loads of increasing intensity
and varying distribution.

In particular, the dimensionless pressure, P̂A, was used
as a parameter that distinguishes hard, P̂A << 1, from soft
shells, P̂A ≈ 1, and the corresponding main response pat-
terns that were obtained. In the former case, the simulated
f-d curves exhibited the standard linear to curved down-
wards transition from flat to buckled shapes correspond-
ing to the Reissner and Pogorelov regimes, respectively.
Decreasing the dimensionless bending resistance, k̂b, enhances
the onset of buckling by making bending an energetically
favorable component of the energy distribution. In terms
of the modeling approach of the present study, the above
two regimes are characterized by the load concentrating at
the edge of the contact region and within a dimpled region
where most of the bending strain develops, called transition
region, respectively. The latter region smoothly joins the con-
tact region with the shell outer part and is the part of the
shell where intermolecular forces directly balance bending.
Consequently, the above two regimes signify dominance of
the stretching and bending strains that are generated as a
result of the external load in the contact and transition layers,
respectively.

Soft shells, P̂A ≈ 1, exhibit a different static response
with the classic linear Reissner regime followed by a
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curved upwards nonlinear regime that is characterized by
a cubic dependence of force on deformation. In the latter
regime, the dominant balance is between pressure drop and
stretching throughout the outer part of the shell. The force
on the shell in this case is mainly due to the repulsive force
that develops throughout the contact region, thus forcing com-
pression of the gas enclosed in the microbubble. Such a regime
exists for hard shells as well, albeit in the post-buckling regime
and at quite large deformations for which a significant vol-
ume compression has already taken place. In the case of
soft shells, however, buckling is bypassed by volume com-
pression that is energetically favorable. In fact, as bending
resistance, k̂b, increases, the above pattern is enhanced and
the range of validity of the Reissner regime extends to higher
deformations.

When shell adhesion constitutes a significant stiffness
component of the equilibrium process, i.e., as Ŵ0 increases,
compression of the ultrathin film that separates the shell from
the cantilever is not energetically favorable and significant
elongation of the contact region takes place signifying the
onset of compressive in-plane stresses, mainly, and bending.
As a result, volume compression and the onset of the cubic
regime subside and, as deviation from sphericity intensifies,
an almost quadratic response pattern emerges. In fact, for
large values of the adhesion potential, a similar load distri-
bution to the Reissner response pattern develops, with the load
concentrated at the edge of the contact region. In this case,
a linear response is observed with a slope that is different
from the one predicted by Reissner, reflecting the departure
of the shell shape from sphericity. Increasing the interfacial
tension between the shell and surrounding liquid, i.e., as γ̂BW

increases, produces similar effects in the sense that it generates
an additional stiffness component, namely, capillary pressure,
that impairs the capability of the shell volume to compress
and facilitates elongation of the contact regime. As a result, a
response pattern that is almost quadratic is exhibited, instead
of the typical cubic response that characterizes the importance
of interfacial tension.

Finally, simulations with a strain softening constitu-
tive law gave the same response pattern for both types of
materials. Deviations have been observed albeit for unreal-
istic high deformations, where axisymmetry and the elastic
behavior assumption are anticipated to lose validity. This
result is attributed to the fact that the contact region is usu-
ally compressed, while the main part of the shell is elon-
gated, and consequently, the effect of the constitutive law
is mitigated. Simulations that we have performed for sim-
ilar type shells subject to a uniform pressure respond dif-
ferently, depending on the shell constitutive law, as in these
cases the shell is uniformly compressed until buckling takes
place.

The above methodology is a comprehensive tool for the
study of contact problems when elastic shells interact with
hydrophilic interfaces. In particular, and depending on the
affinity between the shell and cantilever materials, the max-
imum attraction or pull-off force that is measured during an
experiment can serve as a means to estimate the interaction
potential, w0, which can be then used for simulating this
process. Furthermore, it is proposed that combination of the

linear Reissner regime with, either the nonlinear curved down
post-buckling regime in the case of hard polymeric shells or
the nonlinear cubic regime, in the case of soft phospholipid
shells, can be used to recover area dilatation and bending
resistance from simulated or experimentally obtained force
deformation curves. A preliminary comparison of the present
model with afm experiments provided in Figs. 5(a) and 5(b)
of the benchmark Sec. III B shows satisfactory agreement
for both types of coatings, i.e., polymers and phospholipids.
An extensive comparison with available afm measurements
from the literature, using the methodology for parameter esti-
mation that was outlined in Sec. IV in the context of the
asymptotic analysis, will be performed in a future study in
order to validate the importance of the physical mechanisms
that are incorporated in the model proposed in the present
study.
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APPENDIX: DERIVATION OF DISJOINING PRESSURE
USING CALCULUS OF VARIATIONS

The energy due to intermolecular forces is Wint =∫∫
©

A

wintdA; therefore, its variation for an axisymmetric shell

in cylindrical (σ, z, ϕ) coordinates is

δWint =

∫∫
©

A

~∇wint · δ~rdA +
∫∫
©

A

wint
δ (dA)
δ~r

· δ~r

=

1∫
0

2π~∇wintσ
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σ2
ξ + z2

ξ · δ~rdξ

+

1∫
0

2πwint

δ
(
σ
√
σ2
ξ + z2

ξ

)
δ~r

· δ~rdξ. (A1)

Noting that~ts = σs~eσ + zs~ez, ~n = σs~ez − zs~eσ , the first term
assumes the form

(A2)

Employing the general rule of variation,61

δF (x, y, x′, y′) = ∂F
∂x δx + ∂F

∂y δy + ∂F
∂x′ δx′ + ∂F

∂y′ δy′, ()′ = d
dξ ,
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where ξ is an independent parameter that does not vary; the variation of the metric becomes

δg =

1∫
0
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δ
(
σ
√
σ2
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ξ

)
δ~r
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=0 for a closed body

⇒
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The integrals in (A3) represent the components of a vector in σ and z direction, which has the following form:
1

∫
0

(Aσδσ + Azδz) dξ =
1

∫
0

(
Aσ~eσ + Az~ez

)
·
(
δσ~eσ + δz~ez

)
dξ =

1

∫
0

~A · δ~rdξ. Alternatively, it is possible to express ~A in the

normal (n) and tangential (s) directions ~A = An~n + As~ts by taking the inner products ~A · ~n, ~A · ~ts, and add the result
to Eq. (A1) containing the variation of the interaction potential W int. Consequently, the above integral formally reads
as

δg =

1∫
0

(
An~n + As~t

)
· δ~rdξ, (A4)

and in the following, we proceed to obtain An and As:
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In the same way, the projection in the normal direction is
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(A6)

Thus, substituting (A2), (A5), and (A6) into (A1),

δWint =

∫∫
©

A

(
∂wint

∂s
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∂n
~n
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)
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Consequently, the total force exerted on the shell as a result
of the compression of the liquid film is provided by Eq. (18),

~F = −
δwint

δ~r
=

∫∫
©

A

(
−
∂wint

∂n
− 2kmwint

)
~ndA. (A8)
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32H. Hertz, “Ueber die Berührung fester elastischer Körper,” J. Reine. Angew.
Math. (Crelle’s Journal) 92, 156–171 (1882).

33K. L. Johnson, K. Kendall, and A. D. Roberts, “Surface energy and the
contact of elastic solids,” Proc. R. Soc. A 324, 301 (1971).

34U. Seifert and R. Lipowsky, “Adhesion of vesicles,” Phys. Rev. A 42, 4768
(1990).

35B. V. Derjaguin, V. M. Muller, and Y. P. Toporov, “Effect of contact defor-
mations on the adhesion of particles,” J. Colloid Interface Sci. 53, 314
(1975).

36V. M. Starov and M. G. Velarde, “Surface forces and wetting phenomena,”
J. Phys.: Condens. Matter 21, 464121 (2009).

37J. N. Israelachvili, Intermolecular and Surface Forces (Elsevier Science,
2010).

38I. Cantat, K. Kassner, and C. Misbah, “Vesicles in haptotaxis with hydro-
dynamical dissipation,” Eur. Phys. J. E 10, 175 (2003).

39M. J. Blount, M. J. Miksis, and S. H. Davis, “The equilibria of vesicles
adhered to substrates by short-ranged potentials,” Proc. R. Soc. A 469,
2012.0729 (2013).

40N. T. Chamakos, M. E. Kavousanakis, and A. G. Papathanasiou, “Enabling
efficient energy barrier computations of wetting transitions on geometrically
patterned surfaces,” Soft Matter 9, 9624 (2013).

41S. Komura, K. Tamura, and T. Kato, “Buckling of spherical shells adhering
onto a rigid substrate,” Eur. Phys. J. E 18, 343 (2005).

42M. P. Neubauer, M. Poehlmann, and A. Fery, “Microcapsule mechanics:
From stability to function,” Adv. Colloid Interface Sci. 207, 65 (2014).

43D. P. Updike and A. Kalnins, “Axisymmetric behavior of an elastic spherical
shell compressed between rigid plates,” J. Appl. Mech. 37, 635 (1970).

44D. P. Updike and A. Kalnins, “Contact pressure between an elastic spherical
shell and a rigid plate,” J. Appl. Mech. 39, 1110 (1972).

45A. Fery and R. Weinkamer, “Mechanical properties of micro- and nanocap-
sules: Single-capsule measurements,” Polymer 48, 7221 (2007).
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