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  Microbubbles (Contrast Agents)  

o Bubbles surrounded by an elastic membrane for stability 

o Low density internal gas that is soluble in blood 

o Diameter 1 to 10 μm 

o Polymer, lipid or protein (e.g. albumin) monolayer shell of thickness 1-30 nm 

  Motivation 

o Contrast perfusion imaging   check the circulatory system by means of 

contrast enhancers in the presence of ultrasound (Sboros et al. 2002; 

Frinking & de Jong, Postema et al., Ultrasound Med. Bio. 1998, 2004)  

 

o Sonoporation   reinforcement of drug delivery to nearby cells that stretch 

open by oscillating contrast agents (Marmottant & Hilgenfeldt, Nature 2003) 

 

o Micro-bubbles act as vectors for drug or gene delivery to targeted  cells 

(Klibanov et al, Adv. Drug Delivery Rev., 1999; Ferrara et al. Annu. Rev. 

Biomed. 2007)    



•  Need for specially designed contrast agents  

 Controlled pulsation and break-up for imaging and 
 perfusion measurements     

•  Chemical shell treatment for controlled wall adhesion for 
 targeted drug delivery 

•  Need for models covering a wider range of CA behavior 
 (nonlinear material behavior, shape deformation, buckling, 
 interfacial  mass transport etc, compression vs expansion 
 only behavior, nonlinear resonance frequency- thresholding) 

•  Need to understand experimental observations and 
 standardize measurements in order to characterize CA’s   
   

Contrast enhanced perfusion 

imaging, via a sequence of  low 

and high Mechanical Index 

(MI) ultrasound pulses 
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• Shell is important for designing and controlling the behavior of contrast agents 

Static Response 

• They buckle when gas diffuses 
 through the shell                   
 (Borden & Longo, Langmuir 2002) 

γ0: surface tension of substrate 

γ:  surface tension of lipid surfactant 
 monolayer 

Wang et al. J. Phys. Chem. 1996 

• Phase transitions occur as the available 
 area per lipid molecule decreases, π=γ0-γ 

Condensed solid phase 

Condensed liquid phase 

π-Α isotherms in a Langmuir trough 

Phase Diagram 

• They regain sphericity via a zippering 
 mechanism that binds the 
 hydrophobic tails of lipid monolayer 

• Borden & Longo, Langmuir (2006Shedding of  excess lipids (lipid shedding or budding) 

• Lee et al., Annu. Rev. Phys . Chem (2008) Formation of  bilayers (reversibility) 



•  Compression only behavior at low amplitudes followed by expansion only at 

 large amplitudes, Marmottant et al. JASA 2005 

•  During “compression only” behavior, the microbubble is mainly deformed during 

 compression 

M. Overvelde,                 

Ph. D Thesis  (2010)   

Univ. Twente 

• Dynamic Response 

AcP 40kPa, 0.4
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Axisymmetric Pulsations 

o Axisymmetry 

o Ideal, irrotational flow 

o Incompressible surrounding fluid with a sinusoidal pressure change in the far field 

o Ideal gas in the microbubble undergoing adiabatic pulsations 

o Very thin viscoelastic shell, often a phospho-lipid monolayer, whose behavior is 

characterized by the constitutive law, e.g. Hookes’s, Mooney-Rivlin or Skalak law 

o The shell exhibits bending modulus that determines bending stresses along with 

curvature variations 

o The shell may be pre-stressed but is always at equilibrium  

o The shell parameters are: area dilatation modulus, χ=3Gsδ, shear viscosity, μS, degree 

of softness or area compressibility, b or C, for strain softening or strain hardening 

shells and the bending modulus, kB 
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•  Shell viscosity dominates liquid viscosity, Res<<Rel and we can drop viscous 
 stresses on the liquid side.  

•  Therefore the tangential force balance is satisfied on the shell with the 
 viscous and elastic stresses in the shell balancing each other.  

Axisymmetric Static Deformation  

•  Obtain estimates of bending and stretching 

 elasticities based on AFM measurements 

• Solution of the normal and tangential force 
 balance along with the torque balance 
 for a shell of small but finite thickness  

•  Point or distributed loads are considered 

• The effect of gas compressibility is also 
 considered 

Schematic of an AFM setup for 
compression of single hollow 
microsphere with a cantilever 



o Strain hardening material (e.g. red blood-cell            
membrane that consists of a lipid bilayer) Skalak law 

o Strain softening material (e.g. lipid 
monolayer) 2D Mooney-Rivlin law 

Shell Constitutive Laws-Isotropic Tension 

o Linear behavior          Hooke’s law 
Kelvin-Voigt law with viscous stresses 
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In the limit of small deformations, ||ei||<<1, all hyperelastic laws reduce to Hooke’s law 
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Numerical Methodology 
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Algorithm 

• Stability analysis is also performed on radially pulsating microbubbles, in 
 order to identify  

  ♦  the eigenfrequencies of axisymmetric shape modes of coated microbubbles 

  ♦ the phase diagram,  i.e. amplitude and frequency of the acoustic  

     disturbance as a function of bubble radius, for parametric shape mode  
     excitation and dynamic buckling 



Radial Pulsations - Effect of sound amplitude 

ρl=998 kg/m3, σ=0.045 kg/s2, R =3*10-6 m, Gs=35 MPa, μS=0.6 kg m-1s-1, δ=15 nm 

0 1 2 3 4 5 6 7 8 9 10

x 10
6

0

200

400

600

800

1000

1200

1400

1600

  =0.5

  =1  

  =1.5

  =2  

v
f
 (Hz)

 (µ
m

2
)

S
c 



 

 





Mooney-Rivlin, 

b=0 

    
Re

,
s Sc

0 1 2 3 4 5 6 7 8 9 10

x 10
6

0

200

400

600

800

1000

1200

1400

1600

  =0.5

  =1

  =1.5

  =2









v
f
 (Hz)

S
c 


 (µ

m
2
)

Skalak,  c=1 

    
Re

,
s Sc

Strain softening shells (e.g. lipid monolayers prefer to be at expansion “expansion 
only behavior” – Their resonance frequency decreases with sound amplitude 

Strain hardening shells (e.g. lipid bilayers prefer to be at compression “compression 
only behavior” – Their resonance frequency increases with sound amplitude 
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Parametric Stability- Resonance-Dynamic Buckling 
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Parametric Stability- The effect of Residual stresses  
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Strain Softening membrane 

•  Residual stresses 

 significantly reduce 

 the stability 

 threshold in terms of  

 sound amplitude 

•  Shape mode growth 

 occurs primarily 

 during compression 

• The amplitude 

 window between 

 saturation and 

 transient break-up is 

 condensed 
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The effect of Residual stresses – Change in the Constitutive Law 

• Increasing ε to 1.5  results 

 in transient break- up of  

 the microbubble via 

 dynamic buckling 

• Employing a change in the 

 constitutive law from 

 strain softening to strain 

 hardening results in a 

 compression only type 

 behavior with viscous 

 stabilization of  

 microbubble pulsations 

• This phase transition is 

 employed when the 

 amplitude of  emerging 

 shape modes grows 

 beyond a certain level 

 signifying the appearance 

 of  high curvature regions 

 where lipid bilayers are 

 formed 

Simulation for a 

strain softening 

shell when ε=1.8 
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Static Simulations of Microbubble Response to a Point Load 

• Viscoelastic parameters of the shell are 

 estimated based on asymptotic analysis of 
 the experimental force displacement curve 

•  A linear regime is identified at very small 
 displacements followed by a nonlinear 
 regime (at this stage we ignore gas 
 compressibility in the asymptotic analysis) 

• Coupled of experimental data from the two 
 regimes with asymptotic prediction provides 

 estimates of χ=3Gsh and  
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For BR14 we obtain 
χ~0.1 Ν/m and 
kb~0.5x10-14 Nm 
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Conclusions 

•  Nonlinear shell properties, e.g strain softening vs. strain hardening membrane 
 material, significantly affect contrast agent response  

•  Allowing for bending elasticity shape deformation and buckling are captured 
 Bending elasticity is independent from area dilatation modulus due to non-
 isotropy of the  membrane 

•  Polymeric shells follow a neo-Hookean behavior - Lipid monolayer shells 
 exhibit a strain softening behavior (they become softer at expansion as the 
 area density of the monolayer decreases) – Lipid bilayer shells exhibit strain 
 hardening behavior (they become softer at compression) 

•  Static buckling occurs when the microbubble suffers a step increase in external 
 pressure, or a sinusoidal change of very small frequency compared against its 
 resonance frequency, of sufficiently large amplitude 

•  Static simulations of point load response reveal linear and nonlinear regimes that 
 can be combined to provide estimates of χ and kb  

 Shell thickness is not a relevant parameter for thin monolayer shells 
 Compressibility effects will improve estimates for shells with stiffness that is 
 comparable with stiffness due to gas compressibility, e.g. lipid monolayers 



• Mode saturation is captured above the stability threshold (supercritical growth) 

 for parametric excitation -- Growth of unstable modes occurs mostly during 
 compression -- Part of the energy lost by the radial mode due to deformation 
 is returned to it via nonlinear interaction with the emerging mode during 
 compression  Preferential radial excursion at compression 

•  Strain softening shells exhibit this pattern more often and mostly for 

 subharmonic ecxitation for which there is more time available for energy 
 exchange – As the amplitude increases towards the threshold for dynamic 
 buckling transient break-up takes place 

•  Dynamic buckling (equivalent to Rayleigh-Taylor instability for free bubbles) 

 occurs  exponentially fast for much larger sound amplitudes.        
 Strain softening shells tend to exhibit this behavior at lower amplitudes 
 than strain hardening ones due to viscous stabilization of the latter 

• “Compression only” behavior is probably associated with bending at 
 compression and subsequent formation of bilayer structures that introduce 
 strain hardening behavior to the shell response  Results in significant radial 
 excursion at compression and stabilization, against growth of shape modes 
 and transient break-up, due to viscous damping 

• For initially pre-stressed shells the amplitude thresholds for parametric 
 mode excitation and transient break-up are significantly reduced and the 
 window for saturated pulsations shrinks – “Compression only behavior” is a 
 natural means to extend stability and cohesion of the microbubble 



• Develop a constitutive law for bending and stretching energy that is taylor-
 made for each contrast agent and accounts for monolayer to bilayer phase 

 transitions 

• Develop a set of static, e.g. via AFM,  and dynamic measurements for 
 contrast agent characterization 

•  Study Bubble-wall, bubble-cell interaction and the dynamic behavior of 
 trapped microbubbles 

Future Work 

Thanks for your attention 

Questions 


