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[Blomley et al., Br. Med. J., 2001]

➢ Medical Imaging-Diagnostic 
Applications (Heart, Kidney, Liver)

➢ Treatment with microbubbles-
Drug or gene delivery 

[Ferrara et al., Annu. Rev. Biomed. Eng., 2007]

• Elastic coating (Polymer or Lipid)
• Initial Diameter  ~ 2-5   μm
• Initial Thickness ~ 1-30 nm
• Strong Backscattered Acoustic

Signal
• Biocompatibility
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Experimental Investigation of the
Mechanical Properties with the
Atomic Force Microscope (AFM).

[Glynos et al., Langmuir, 2009]

Cantilever

Laser 
Beam

Photodiode

Microbubble

AFM Device 

Microbubble covered with polymer

[Buchner Santos et al., Langmuir, 2012]

Microbubble covered with lipid
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▪ Simulation of the static response of CA 
microbubbles.

▪ Comparison with AFM experimental 
measurements.

▪ Estimation of the elastic properties (Young’s 
& bending modulus).

▪ Optimization of the design of microbubbles

Scope of the Present Work
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Classic Contact Problem (Polymeric Bubbles)
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[Pozrikidis, J. Fluid Mech., 2001]
[Tsiglifis & Pelekasis, Phys. Fluids, 2011]
[Barthès-Biesel et al., J. Fluid Mech., 2002]
[Updike & Kallins, Trans. ASME, 1970, 1972, 1972]
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Weak Form-Classic contact problem
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Weak Form-Adhesive Potential with Elasticity
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[Pelekasis, Manolis, Tsamopoulos, Phys. Fluids, 1990]
[Tsiglkifis & Pelekasis, Phys. Fluids, 2011]
[Lytra & Pelekasis, Fluid Dyn. Res., 2014]

▪ Method of Weighted Residuals:

▪ Basis Functions:
Β-Cubic Splines

▪ Calculation of Integrals: 4 Points Gauss Quadrature

▪ Solution of Linear System: Newton-Raphson Iterations
Simple or Arc-Length Continuation

▪ Validation: Calculation of the critical buckling load
and comparison with previous analytical
or experimental results.
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                 :  Residuals
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Continuation of the solution
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[Updike & Kallins, Trans. ASME, 1970, 1972, 1972]
[ Lytra, Pelekasis, Zafiropoulou, Zisis, Giannakopoulos, 8th GRACM Full Paper ]

Validation of Classic Contact Modeling 

▪ Buckling point by FEM: (2.5, 130) & θc=9⁰
▪ Buckling point by U&K: (2.1,100) & θc=8⁰
▪ The buckling FEM curve corresponds to a

solution with the same number of
negative eigenvalues with the flat curve
before buckling.

1 negative eigenvalue

2 negative eigenvalues

θc

910

100

=

=

E Pa

R h
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Classic Contact Modeling-AFM Data of Polymeric Bubbles

[Glynos et al., Langmuir, 2009]
[Lytra, Pelekasis, Sboros, Glynos, Koutsos, Procedia IUTAM, 2015 ]

▪ Linear region         - flat shape.

▪ Non-linear region - buckled-shell. 

▪ The simulation can capture the 
experimental data.

▪ The amount of pre-stress explains the 
different response of experimental curves.

▪ The discrepancy in higher values of 
deformation is probably due to 3D-effects.
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[ Lytra, Pelekasis, Zafiropoulou, Zisis, Giannakopoulos, 8th GRACM Full Paper ]

Asymptotic Analysis for Polymeric Bubbles
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Ro=1.3 μm ; ν=0.5 AFM Experiment Reissner-Pogorelov Plane Contact

Young’s Modulus [GPa] 10-16 8.5 20

Shell Thickness     [nm] 20 25 16

[Glynos et al., Langmuir, 2009]
[Lytra, Pelekasis, Sboros, Glynos, Koutsos,  Procedia IUTAM, 2015]
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Elastic Properties Estimation - Polymeric Bubbles

The elastic properties can be estimated by a single measurement, the f-d curve.
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Adhesive Potential-Bubble Covered With Lipid

[Buchner Santos et al., Langmuir, 2012]

Elasticity Only
χ=0.05 Ν/m
kb=3·10-16 Nm
Wo=10-4 N/m
δΑ=50·10-9 m
γ=1.07
Mooney-Rivlin (b=1)

Elast. Surf. Tension 
Pre Stress

χ=0.05 Ν/m
kb=3·10-16 Nm
Wo=10-4 N/m
δΑ=50·10-9 m
σ=10-2 N/m
V=-0.14·10-6 m
γ=1.07
Mooney-Rivlin (b=1)

Free Bubble
σ=4·10-2 N/m
Wo=10-4 N/m
δΑ=50·10-9 m
γ=1.07
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Adhesive Potential-Bubble Covered With Lipid

▪ The shell remains flattened.

▪ The contact angle is not constant.



Introduction | Mathematical Modeling | Numerical Analysis | Results | Conclusions

Asymptotic Analysis for Lipids
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Adhesive Potential-Parametric Study (Elasticity Model)

Wo=10-1 N/m
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➢ The classic contact model can easily simulate the force-deformation curve of a 
microbubble covered with polymeric shell.

▪ The linear regime followed by a non-linear is associated with a sub-critical 
bifurcation.

▪ In the linear regime, the shell remains flattened, but in the non-linear 
buckling takes place.

➢ In cases of lipids, which are softer, the intermolecular forces must be accounted 
for.

▪ The experimental curve is almost linear, which indicate that buckling is not 
taking place.

▪ Three models are considered in the present work, where no buckling was 
observed. The change of length is preferable, than bending, due to 
adhesion, which attaches the shell in cantilever. 

▪ The elasticity only model seems to be the more suitable for the simulations 
of the static response of CA microbubbles, covered with lipid.

▪ The estimation of the elastic properties, requires further asymptotic analysis 
and perhaps different experimental set-up with side view photos.
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Current & Future Work

▪ Simulation of a drop and a microbubble 
resting on a flat surface (Trapped 
microbubbles). 

▪ Further asymptotic analysis and estimation 
of the elastic properties of bubbles covered 
with lipids.
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Adhesive Potential-Parametric Study (Free Bubble)
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Bifurcation Diagrams

[Lytra & Pelekasis, Fluid Dyn. Res., 2014]

Gs=40 MPa
kb=3·10-14 Nm
σ=0.051 N/m
Mooney-Rivlin
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Bifurcation Diagrams

[Lytra & Pelekasis, Fluid Dyn. Res., 2014]

Gs=80 MPa
kb=3·10-14 Nm
σ=0.051 N/m
Mooney-Rivlin
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➢ The static response of microbubbles, covered with an elastic shell, subject to a 
uniform   pressure was investigated.

▪ In this problem, the shell remains spherical for increasing the external 
overpressure, but its volume is decreasing.

▪ When the overpressure reaches the critical load, the shell buckles into a 
symmetric or a non-symmetric shape. The buckling is indicated by one more 
negative eigenvalue. Following simple continuation, the post-buckling f-d 
curve is generated.

▪ In every post-buckling curve a limit point was accounted and arc- length 
continuation was performed.

▪ In the case of Gs=40 MPa, the first bifurcation point is dominated by the a 
symmetric eigenmode (P2), which leads to a oblate or prolate shapes.

▪ In the case of Gs=80 MPa, the first bifurcation point is dominated by a non-
symmetric eigenmode (P3) and non-symmetric shapes.


