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[Blomley et al., Br. Med. J., 2001]
[Song et al., IEEE Ultrasonics, 2018]

➢ Medical Imaging-Diagnostic 
Applications (Heart, Kidney, Liver)

➢ Treatment with microbubbles-
Drug or gene delivery 

[Ferrara et al., Annu. Rev. Biomed. Eng., 2007]
[Kotopoulis et al., Med. Physics, 2013]

• Elastic coating (Polymer or Lipid)
• Initial Diameter  ~ 2-5   μm
• Initial Thickness ~ 1-30 nm
• Strong Backscattered Acoustic

Signal
• Biocompatibility

Motivation
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Atomic Force Microscope (AFM) Experiments
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Microbubbles covered with polymer

[Glynos et al., Langmuir, 2009] [Elsner et al., Prog. Col. Pol. Sc., 2006]

Microbubbles covered with lipid

[Bucher-Santos et al., Langmuir, 2012] [Abou-Saleh et al., Langmuir, 2013]

Microcapsules

[Mercadé-Prieto et al., Chem. Eng. Sc., 2011]

[Lulevich et al., J. Chem. Phys., 2004]
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[Blount et al. Proc. R. Soc. A, 2013]
[Starov & Verlade, J. Phys. Condens. Matter, 2009]

[Lytra & Pelekasis, Phys. of Fluids, 2018]
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Constitutive laws & Pre-stressed shell
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Elastic Tensions

Function of Elastic Energy

[Timoshenko & Woinowsky-Krieger, Theory of plates and shells. 1959]
[Barthès-Biesel et al., J. Fluid Mech., 2002]

[Pozrikidis,  Modeling and Simulation of Capsules & Biological Cells 2003]

6

Function of bending ( )2 22
2

= + +b
b s s φ φ

k
w K νK K K

Gas compression:
2

ˆ
1 1

+   
= +  + − +   

− −   

G A BW
c A o A

P P γ
w V P P V P

γ γ

Surface energy: ˆ
= s W

A

w γ dA



| Introduction | Mathematical Modeling | Results | Conclusions |

▪ Method of Weighted Residuals:

▪ Basis Functions:
Β-Cubic Splines

▪ Solution of the System: Newton-Raphson Iterations
Simple or Arc-Length Continuation

 = :  Jacobian Matrix

                 :  Uknown coefficients

                 :  Residuals

J dc R J

c
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Finite Element Method
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[Updike & Kalnins, Trans. ASME, 1970, 1972, 1972]

Validation

▪ The numerical model recovers the
analytical solution.

▪ The flat solution after the buckling point
is unstable.

▪ The pick of the disjoining pressure profile
is located at the end of contact area for
flat shapes and at the dimple for buckled
shapes.
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Asymptotic Solutions
9

▪ Linear response in f-d curve with flat shapes
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[Reissner, J. Math. Phys., 1946]
[Pogorelov, Am. Math. Soc., 1988]

[Landau, Theory of Elasticity, 1986]
[Shanahan, J. Adhesion, 1997]

[Lulevich et al. , J. Chem. Phys., 2004]
[Lytra & Pelekasis, Phys. of Fluids, 2018]
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▪ Curved downwards response with buckled shapes

▪ Curved upwards response with flat shapes
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Parametric Study:               Microbubbles covered with polymer: Effect of bending
10ˆ 1AP
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2ˆ 2.7 10−= bk

[Lytra & Pelekasis, Phys. of Fluids, 2018]

▪ The f-d curves initially
follow the Reissner
regime and then the
Pogorelov.

▪ Increasing bending
postpones buckling.

▪ Disjoining pressure is
concentrated around
the contact area at
small deformations
and at the end of
contact for higher
deformations.

0
ˆ ˆ2.5 7.5= = bd h R k 5ˆ 2.7 10−= bk

5ˆ 2.7 10−= bk

5ˆ 2.7 10−= bk
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Microbubbles covered with polymer: Comparison with AFM experiments
11ˆ 1AP

[Lytra et al., Soft Matter, submitted]

AFM Experiment by Elsner et al., Prog. Col. Pol. Sc., 2006 
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▪ The f-d curves initially follow
the Reissner, then the
Pogorelov & at high
deformations the pressure
dominate regime.

▪ Similar response in the AFM
experiment with instabilities
at higher deformations.

▪ Coupling of the Reissner’s
regime and the buckling
point estimate the elastic
properties.

▪ Satisfactory agreement
between the two curves.

AFM Experiment by Glynos et al., Langmuir, 2009 
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Reissner to PogorelovReissner & Buckling point

▪ Same response pattern in f-d curves.
▪ The Reissner to Pogorelov transition

overestimates the deformation.
▪ Combination of Reissner model & the

buckling point predicts better the
experiment.

▪ The horizontal plateau in experimental
curve indicates inelastic effects.
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Comparison with compression experiment for a table tennis ball
12ˆ 1AP

Experiment by   Shorter et al., J. Mech. Mat. & Str., 2010
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Reissner & Buckling point

▪ A pure repulsive potential is considered
here (Hamaker).

▪ The transition area between the
contact and the outer shell is very small
in comparison with the shell radius.
Thus an area of high curvature is
formed, which requires a finer mesh in
order to obtain a converged solution.

[Lytra et al., Soft Matter, submitted]
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Parametric Study:             Microbubbles covered with phospholipid: Effect of bending
13ˆ ~ 1AP

[Lytra & Pelekasis, Phys. of Fluids, 2018]

▪ When elasticity is comparable with the
gas pressure buckling is by-passed to a
curved up-wards regime even for shell
with small bending modulus.

▪ The increase of bending extends the
validity of Reissner regime.

▪ The profiles of the disjoining pressure
have a non-zero plateau in the contact
area, which is responsible for the cubic
dependence of the f-d curve.
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Microbubbles covered with phospholipid: Comparison with AFM experiments
14ˆ ~ 1AP

[Lytra et al., Soft Matter, submitted]

Experiment by   Bucher Santos et al., Langmuir, 2012.
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Reissner & pressure dominated regime

Experiment by   Abou-Saleh et al., Langmuir, 2013.
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Reissner & pressure dominated regime

▪ The experimental f-d curve
follows the initial linear
Reissner’s regime and then
the curved upwards cubic
regime.

▪ Coupling of the two
asymptotic models gives
reliable estimates of the area
elasticity and bending moduli.

▪ Numerical and experimental
curves are in excellent
agreement.

▪ The MB remains flattened
around the contact area even
at higher values of
deformation.
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Capsules with constant volume: Comparison with AFM experiments
15ˆ 1AP

Experiment by   Lulevich et al., J. Chem. Phys., 2004.-PLA
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▪ The experimental f-d curve
follows the curved upwards
cubic regime.

▪ The linear regime disappears
due to relatively small
bending resistance.

▪ The asymmetric loading
conditions do not introduce
significant discrepancies.

▪ Both contact areas remain
flattened without buckling.

Experiment by   Mercadé-Prieto et al., Chem. Eng. Sc., 2011.-MF
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▪ The experimental f-d curve
follows the linear Reissner
regime and then the curved
upwards cubic regime.

▪ The disjoining pressure reflect
also the calculated f-d curves:

▪ PLA: constant and increasing
disjoining pressure near the
contact area even at small
values of deformations.

▪ MF: Initially point load at the
end of contact area and then
non-zero around the contact
for higher deformation.

[Lytra et al., Soft Matter, submitted]
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Capsules with constant volume: Comparison with AFM type experiments
16ˆ 1AP

Experiment by   Frostad et al.  (on going work…)

▪ The experimental f-d curve follows
the linear Reissner regime and then
the curved upwards cubic regime.

▪ The numerical curve predicts very
well the linear regime, but
underestimates the force in the
non-linear regime.

▪ Asymmetric scenarios are
investigated.

▪ Modelling improvement required.
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▪ A theoretical model is presented to simulate afm experiments.

▪ MB covered with polymer: The f-d curve follows the Reissner and then the
Pogorelov regime, where buckling takes place.

▪ MB covered with lipid: The f-d curves follow the Reissner and then the pressure
dominated regime, where the shape remains flattened in the contact area.

▪ Capsules with constant volume: The f-d curves follow the same response pattern as
MB covered with lipid.

But, for relatively small bending resistance the linear regime shrinks and the cubic
response dominates even at low values of deformation.

▪ The increase of bending postpones buckling.

▪ Gas pressure prevents buckling even for relatively thin shells.

▪ The elastic properties can be estimated from the f-d curves for both type of
materials, based on simple analytical solutions.

▪ The theoretical model recovers the experiments for a wide range of afm data.

Modelling & Simulations of AFM Experiments
17
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Asymptotic Analysis for Microbubbles covered with Lipid Monolayer
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Classic Contact Problem
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Continuation of the solution
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Weak Form-Classic contact problem
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Finite Elements-Weak Form
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[Knoche & Kierfeld, Physical Review E, 2011]

Validation of Bifurcation Diagrams
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Parametric Study:                Microbubbles covered with polymer: Effect of adhesion
25ˆ 1AP

▪ Buckling is postponed or even by-
passed as adhesion increases.

▪ When strong adhesion is considered,
the zero point force does not
correspond to an undeformed shape.

▪ The flat solution after the buckling
point has higher energy: Unstable
branch.

[Lytra & Pelekasis, Phys. of Fluids, 2018]
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Parametric Study:             Microbubbles covered with phospholipid: Effect of adhesion
26ˆ ~ 1AP

[Lytra & Pelekasis, Phys. of Fluids, 2018]

3ˆ ˆ ˆ2.7 10 , 3, 0

0.5, 0, , u 0

−=  = =

= = − =  

b A BWk P γ

ν γ Mooney Rivlin law

▪ As the adhesion parameter increases
both repulsive and maximum attractive
forces increase.

▪ The shape of the shell at maximum
attraction is significantly deformed
with the position of the pole at a value
higher than the initial.

▪ The competition between the thinning
of the liquid film and the increase of
the gas pressure results an increase in
in-plane stresses.

▪ The latter generate a linear response in
f-d curve with slope higher than
Reissner slope.
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