# «Numerical Simulation of the Static Response of Coated Microbubbles: Estimation of Elastic Properties and Comparison with Experiments»



A. Lytra<sup>1</sup>, V. Sboros<sup>2</sup>, A. Giannakopoulos<sup>3</sup> & N. Pelekasis<sup>1</sup>

<sup>1</sup>University of Thessaly, Department of Mechanical Engineering, Greece. <sup>2</sup>Herriot Watt University, Institute of Biological Chemistry, UK. <sup>3</sup>National Technical University of Athens, School of Applied Mathematics & Mechanics, Greece.



12HSTAM International Congress on Mechanics, 22-25 September, Thessaloniki, Greece.

## Outline

- Introduction
- Mathematical Modeling
- Results
  - Parametric study
  - Comparison with Experiments
- Conclusions

## **Motivation**

- Elastic coating (Polymer or Lipid)
- Initial Diameter ~ 2-5 μm
- Initial Thickness ~ 1-30 nm
- Strong Backscattered Acoustic Signal
- Biocompatibility
- Medical Imaging-Diagnostic
   Applications (Heart, Kidney, Liver)





[Blomley et al., Br. Med. J., 2001] [Song et al., IEEE Ultrasonics, 2018]

Treatment with microbubbles-Drug or gene delivery





Drug Release [Ferrara et al., Annu. Rev. Biomed. Eng., 2007] [Kotopoulis et al., Med. Physics, 2013]

| Introduction | Mathematical Modeling | Results | Conclusions



#### **Atomic Force Microscope (AFM) Experiments**



Introduction | Mathematical Modeling | Results | Conclusions

**AFM Device** 



| Introduction | Mathematical Modeling | Results | Conclusions

5

#### **Constitutive laws & Pre-stressed shell**



Elastic Tensions

$$\underline{\underline{\tau}} = \frac{2}{J_s} \left[ \frac{\partial w}{\partial I_1} \underline{\underline{A}} \cdot \underline{\underline{A}}^T + \frac{\partial w}{\partial I_2} J_s^2 \left( \underline{\underline{I}} - \vec{n}\vec{n} \right) \right]$$

Function of Elastic Energy  

$$w^{HK} = \frac{G_s}{4(1-v)} \left[ \left(\lambda_s^2 - 1\right)^2 + 2v\left(\lambda_s^2 - 1\right)\left(\lambda_{\varphi}^2 - 1\right) + \left(\lambda_{\varphi}^2 - 1\right)^2 \right]$$

$$w^{MR} = w\left(I_1, I_2\right) = \frac{G_{MR}}{2} \left[ \left(1 - b\right)\left(I_1 + 2 + \frac{1}{I_2 + 1}\right) + b\left(\frac{I_1 + 2}{I_2 + 1} + I_2 + 1\right) \right]$$

$$w^{SK} = w\left(I_1, I_2\right) = \frac{G_{SK}}{4} \left[I_1^2 + 2I_1 - 2I_2 + CI_2^2\right]$$

Function of bending  $w_b = \frac{k_b}{2} \left( K_s^2 + 2\nu K_s K_{\varphi} + K_{\varphi}^2 \right)$ Gas compression:  $\hat{w}_c = V \left( P_A + \Delta P + \frac{P_G}{\gamma - 1} \right) - V_o \left( P_A + \frac{P_A + 2\gamma_{BW}}{\gamma - 1} \right)$ 



Surface energy:  $\hat{w}_{s} = \int_{A} \gamma_{BW} dA$   $R^{SF} = R^{0} - u$   $\lambda_{s} = \lambda_{\varphi} = \frac{R^{0}}{R^{0} - u}$  $P_{G} = P_{A} + 2\gamma_{BW} + \tau_{ss} + \tau_{\varphi\varphi}$ 

> [Timoshenko & Woinowsky-Krieger, *Theory of plates and shells*. 1959] [Barthès-Biesel et al., *J. Fluid Mech.*, 2002] [Pozrikidis, *Modeling and Simulation of Capsules & Biological Cells* 2003]

| Introduction | Mathematical Modeling | Results | Conclusions



- Method of Weighted Residuals:  $\underline{J} \cdot d\vec{c} = \vec{R}$   $\underline{J}$ : Jacobian Matrix  $\vec{c}$ : Uknown coefficients  $\vec{R}$ : Residuals
- Basis Functions: B-Cubic Splines

$$B_{i}(t_{j}) = \begin{cases} 4, & j = 1 \\ 1, & j = i \pm 1 \\ 0, & j = i \pm 2 \end{cases}$$

• Solution of the System:

Newton-Raphson Iterations Simple or Arc-Length Continuation



### Validation





- The numerical model recovers the analytical solution.
- The flat solution after the buckling point is unstable.
- The pick of the disjoining pressure profile is located at the end of contact area for flat shapes and at the dimple for buckled shapes.

$$\hat{k}_{b} = 9 \cdot 10^{-6}, \hat{P}_{A} = 10^{-2}, \hat{W}_{0} = 10^{-4} \text{ or } 10^{-3}, \hat{\gamma}_{BW} = 0$$
  

$$E = 10^{9} Pa, R/h = 100$$
  

$$v = 0.3, \gamma = 0, \text{ Hooke's law}, u = 0$$

[Updike & Kalnins, Trans. ASME, 1970, 1972, 1972]

| Introduction | Mathematical Modeling | Results | Conclusions



Linear response in f-d curve with flat shapes

Reissner's eq. 
$$F = \frac{4}{\left[3\left(1-v^2\right)\right]^{0.5}} \frac{Eh^2}{R_0} \Delta \text{ or } F = 8\sqrt{\chi k_b} \frac{\Delta}{R_0}$$

Curved downwards response with buckled shapes

Pogorelov's eq. 
$$F = \left[\frac{3.56E^2h^5}{(1-v^2)R_o^2}\Delta\right]^{0.5}$$

Curved upwards response with flat shapes

Pressure dominated regime :  $F = \frac{4\pi\chi}{R_0^2}\Delta^3 = 4\pi\chi R_0 \left(\frac{\Delta}{R_0}\right)^3$ Total Force :  $F = 8\sqrt{\chi k_b}\frac{\Delta}{R_0} + 4\pi\chi R_0 \left(\frac{\Delta}{R_0}\right)^3$ 



[Reissner, J. Math. Phys., 1946] [Pogorelov, Am. Math. Soc., 1988] [Landau, Theory of Elasticity, 1986] [Shanahan, J. Adhesion, 1997] [Lulevich et al., J. Chem. Phys., 2004] [Lytra & Pelekasis, Phys. of Fluids, 2018]

| Introduction | Mathematical Modeling | Results | Conclusions

## Parametric Study: $\hat{P}_A \ll 1$ Microbubbles covered with polymer: <u>Effect of bending</u><sup>10</sup>



- The f-d curves initially follow the Reissner regime and then the Pogorelov.
- Increasing bending postpones buckling.
- Disjoining pressure is concentrated around the contact area at small deformations and at the end of contact for higher deformations.

$$\hat{P}_{A} = 3 \times 10^{-4}, \ \hat{W}_{0} = 2 \times 10^{-6}, \ \hat{\gamma}_{BW} = 0$$
  
 $v = 0.5, \ \gamma = 0, \ Hooke's \ law, \ u = 0$ 



[Lytra & Pelekasis, Phys. of Fluids, 2018]

| Introduction | Mathematical Modeling | Results | Conclusions |

## $\hat{P}_A << 1$ Microbubbles covered with polymer: <u>Comparison with AFM experiments</u>



| Introduction | Mathematical Modeling | Results | Conclusions

11

## $\hat{P}_A << 1$ Comparison with compression experiment for a table tennis ball

Experiment by Shorter et al., J. Mech. Mat. & Str., 2010





$$R_{0} = 2 \text{ cm}, \ h = 0.4 \text{ mm},$$
  

$$E = 2.8 \text{ MPa}, \ A = 10^{-10} \text{ Nm},$$
  

$$v = 0.4, \ \gamma = 0, \ Hooke's \ law,$$
  

$$\hat{k}_{b} = 4 \times 10^{-5}, \ \hat{P}_{A} = 0,$$
  

$$\hat{A} = 2.2 \times 10^{-10}, \ \hat{\gamma}_{BW} = 0, \ u = 0$$

- A pure repulsive potential is considered here (Hamaker).
- The transition area between the contact and the outer shell is very small in comparison with the shell radius. Thus an area of high curvature is formed, which requires a finer mesh in order to obtain a converged solution.

[Lytra et al., Soft Matter, submitted]

12

## Parametric Study: $\hat{P}_{A} \sim 1$ Microbubbles covered with phospholipid: <u>Effect of bendin</u><sup>13</sup>



- When elasticity is comparable with the gas pressure buckling is by-passed to a curved up-wards regime even for shell with small bending modulus.
- The increase of bending extends the validity of Reissner regime.
- The profiles of the disjoining pressure have a non-zero plateau in the contact area, which is responsible for the cubic dependence of the f-d curve.

[Lytra & Pelekasis, Phys. of Fluids, 2018]

| Introduction | Mathematical Modeling | Results | Conclusions |



## $\hat{P}_{A} \sim 1$ Microbubbles covered with phospholipid: <u>Comparison with AFM experiments</u><sup>1</sup>

#### Experiment by *Bucher Santos et al., Langmuir, 2012.*



#### Reissner & pressure dominated regime

$$\begin{split} R_0 &= 2.1 \mu m, \ \chi = 0.19 \text{ N/m}, \ k_b = 5.8 \times 10^{-16} \text{ Nm}, \ W_0 = 10^{-4} \text{ N/m}, \\ \nu &= 0.5, \ \gamma = 1.07, \text{ Mooney-Rivlin law}, \\ \hat{k}_b &= 6.9 \times 10^{-4}, \ \hat{\rho}_s = 1.1, \ \hat{W}_0 = 5.2 \times 10^{-4}, \ \hat{\rho}_{sw} = 0 \end{split}$$

- The experimental f-d curve follows the initial linear Reissner's regime and then the curved upwards cubic regime.
  - Coupling of the two asymptotic models gives reliable estimates of the area elasticity and bending moduli. Numerical and experimental curves are in excellent agreement.
- The MB remains flattened around the contact area even at higher values of deformation.

#### Reissner & pressure dominated regime

$$\begin{split} R_0 &= 1.75 \ \text{µm}, \ \chi = 7.7 \times 10^{-3} \ \text{N/m}, \ k_b = 1.76 \times 10^{-15} \ \text{Nm}, \ W_0 = 10^{-4} \ \text{N/m}, \\ v &= 0.5, \ \gamma = 1.07, \ \text{Mooney-Rivlin law}, \\ \hat{k}_b &= 7.5 \times 10^{-2}, \ \hat{P}_A = 2.3, \ \hat{W}_0 = 1.3 \times 10^{-2}, \ \hat{\gamma}_{\text{BW}} = 0 \end{split}$$

#### [Lytra et al., Soft Matter, submitted]

Introduction | Mathematical Modeling | Results | Conclusions



## $\hat{P}_A >> 1$ Capsules with constant volume: <u>Comparison with AFM experiments</u>



[Lytra et al., Soft Matter, submitted] Introduction | Mathematical Modeling | Results | Conclusions



15

## $\hat{P}_A >> 1$ Capsules with constant volume: <u>Comparison with AFM type experiments</u>

#### Experiment by *Frostad et al.* (on going work...)



- The experimental f-d curve follows the linear Reissner regime and then the curved upwards cubic regime.
- The numerical curve predicts very well the linear regime, but underestimates the force in the non-linear regime.
- Asymmetric scenarios are investigated.
- Modelling improvement required.

(b)

#### | Introduction | Mathematical Modeling | Results | Conclusions |



16

#### **Modelling & Simulations of AFM Experiments**

- A theoretical model is presented to simulate afm experiments.
- MB covered with polymer: The f-d curve follows the Reissner and then the Pogorelov regime, where buckling takes place.
- MB covered with lipid: The f-d curves follow the Reissner and then the pressure dominated regime, where the shape remains flattened in the contact area.
- Capsules with constant volume: The f-d curves follow the same response pattern as MB covered with lipid.

**But**, for relatively small bending resistance the linear regime shrinks and the cubic response dominates even at low values of deformation.

- The increase of bending postpones buckling.
- Gas pressure prevents buckling even for relatively thin shells.
- The elastic properties can be estimated from the f-d curves for both type of materials, based on simple analytical solutions.
- The theoretical model recovers the experiments for a wide range of afm data.



This work was performed in the framework of the operational program: «Education and lifelong learning» - «**Aristeia**» and was cofounded by the European Union (European Social Fund), national resources

and the Dep. of Mechanical Engineering-University of Thessaly.

# http://contrast-aristeia.mie.uth.gr/

# Thank you for your attention!









European Union European Social Fund

Co-financed by Greece and the European Union

Extra Slides

#### Asymptotic Analysis for Microbubbles covered with Lipid Monolayer





Comparison against experiments

Deformation= $R_o$ -z( $\xi_c$ )

[Barthès-Biesel et al., J. Fluid Mech., 2002] [Pozrikidis, Modeling and Simulation of Capsules and Biological Cells. 2003: Taylor & Francis] [Tsiglifis & Pelekasis, Phys. Fluids, 2011] [Updike & Kalnins, Trans. ASME, 1970, 1972, 1972]

ic Contact Problem  
Normal and Tangential Force Balance  

$$\Delta \vec{F} = \Delta \vec{P} \Rightarrow \begin{cases} \Delta \vec{F}_{N} = (P_{G} - P_{A} - P_{ext}(\xi))! \cdot \vec{n} \\ \Delta \vec{F}_{s} = \vec{0} \end{cases}$$

$$\Delta \vec{F} = -\vec{\nabla}_{s} \cdot (\tau_{ss}\vec{t}_{s}\vec{t}_{s} + \tau_{\varphi\varphi}\vec{t}_{\varphi}\vec{t}_{\varphi} + q\vec{t}_{s}\vec{n}) + \gamma_{BW}\vec{\nabla}_{s} \cdot \vec{n}$$

$$\vec{q} = \vec{\nabla}_{s} \cdot \underline{m} \cdot (\underline{l} - \vec{n}\vec{n})$$

$$\begin{cases} \vec{n} : P_{G} - P_{A} - P_{ext}(\xi) = k_{s}\tau_{ss} + k_{\varphi}\tau_{\varphi\varphi} - \frac{1}{\sigma}\frac{\partial(\sigma q)}{\partial s} + 2k_{m}\gamma_{BW} \\ \vec{t}_{s} : -\left[\frac{\partial\tau_{ss}}{\partial s} + \frac{1}{\sigma}\frac{\partial\sigma}{\partial s}(\tau_{ss} - \tau_{\varphi\varphi}) + k_{s}q\right] = 0$$

$$q = \frac{1}{\sigma}\frac{\partial\sigma}{\partial s} \left[\frac{\partial(\sigma m_{ss})}{\partial \sigma} - m_{\varphi\varphi}\right], P_{ext}(\xi) = \begin{cases} P_{ext}, \xi = \xi_{c} \\ 0, \xi \neq \xi_{c} \end{cases}$$

**Kinematic Condition**  $z_{\xi} = 0$  at  $\xi = \xi_{\zeta}$ 

**Isothermal Gas Compression Boundary Conditions**  $r_{\xi} = \vartheta_{\xi\xi} = 0$  at  $\xi = 0$  and 1  $P_{c0}V_0^{\gamma} = P_cV^{\gamma}$ 

**Unknowns:**  $r(\xi), \theta(\xi), P_G, P_{ext}$ 

1

21



### **Continuation of the solution**

### Simple Continuation:

$$\lambda^{N+1} = \lambda^{N} + \Delta \lambda$$
  
Initial guess for the  
new solution (N+1):  $\vec{c}^{N+1} = \vec{c}^{N}$ 

 $\vec{c}^{N+1}$  $\vec{c}^N$  $\lambda^N$  $\lambda^{N+1}$  $\vec{c}^N$  $\vec{c}^{N+1}$  $\lambda^{N+1}$  $\lambda^N$ Limit point

**Arc-Length Continuation:** 

$$\begin{bmatrix} \begin{bmatrix} J \end{bmatrix} & \vec{R}_{\lambda} \\ \vec{N}_{c} & N_{\lambda} \end{bmatrix} \begin{bmatrix} \vec{c} \\ \lambda \end{bmatrix} = \begin{bmatrix} \vec{R} \\ N \end{bmatrix} \text{ and } \begin{bmatrix} \begin{bmatrix} J \end{bmatrix} & \vec{R}_{\lambda} \\ \vec{N}_{c} & N_{\lambda} \end{bmatrix} \begin{bmatrix} \partial \vec{c} / \partial s \\ \partial \lambda / \partial s \end{bmatrix} = \begin{bmatrix} \partial \vec{R} / \partial s \\ \partial N / \partial s \end{bmatrix}$$
$$N = \left( c_{i}^{N+1} - c_{i}^{N} \right)^{2} + \left( \lambda^{N+1} - \lambda^{N} \right)^{2} - \Delta s^{2}$$

Initial guess for the new solution (N+1):

$$\vec{c}^{N+1} = \vec{c}^N - \frac{\partial \vec{c}^N}{\partial s} \Delta s$$
$$\lambda^{N+1} = \lambda^N - \frac{\partial \lambda^N}{\partial s} \Delta s$$

Initial Guess –

Newton-Raphson  $\longrightarrow$  Convergence

### **Finite Elements-Weak Form**

Weak Form-Classic contact problem

$$\begin{aligned} R_{1} &= \int_{0}^{1} \left[ \left( k_{s} \tau_{ss} + k_{\varphi} \tau_{\varphi\varphi} + 2k_{m} \sigma + P(\xi) + P_{atm} - P_{g} \right) B_{i} r \sin \vartheta s_{\xi} - \frac{\sigma \left( B_{i,\xi\xi} s_{\xi} - B_{i,\xi} s_{\xi\xi} \right)}{s_{\xi}^{2}} - \frac{m_{\varphi} B_{i,\xi} \sigma_{\xi}}{s_{\xi}} \right] d\xi + M_{BT} \\ R_{2} &= \int_{0}^{1} \left[ \tau_{ss} B_{i,\xi} \sigma + B_{i} \sigma_{\xi} \tau_{\varphi\varphi} + \sigma m_{s} \left( k_{s,\xi} B_{i} + k_{s} B_{i,\xi} \right) + k_{s} m_{\varphi} B_{i} \sigma_{\xi} \right] d\xi + N_{BT} \\ R_{3} &= P_{g} V^{\gamma} - P_{atm} V_{0}^{\gamma} \\ \text{where} \\ \xi &= 0: \left( \vartheta = 0 \right) \quad M_{BT} = 0 \text{ and } N_{BT} = 0 \\ \xi &= 1: \left( \vartheta = \frac{\pi}{2} \right) M_{BT} = \frac{\sigma m_{s} B_{i,\xi}}{s_{\xi}} - \sigma q B_{i} \text{ and} \\ N_{BT} &= - \left[ k_{s} m_{s} + \tau_{ss} \right] \sigma B_{i} \\ s_{\xi} &= \frac{ds}{d\xi} = \sqrt{r^{2} \vartheta_{\xi}^{2} + r_{\xi}^{2}} \quad ; \quad \sigma = r \sin \vartheta \quad ; \quad \sigma_{\xi} = \frac{d\sigma}{d\xi} = r_{\xi} \sin \vartheta + r \vartheta_{\xi} \cos \vartheta \end{aligned}$$

## **Validation of Bifurcation Diagrams**



## Parametric Study: $\hat{P}_A \ll 1$ Microbubbles covered with polymer: <u>Effect of adhesion</u><sup>25</sup>



- Buckling is postponed or even bypassed as adhesion increases.
- When strong adhesion is considered, the zero point force does not correspond to an undeformed shape.
- The flat solution after the buckling point has higher energy: Unstable branch.

[Lytra & Pelekasis, Phys. of Fluids, 2018]

| Introduction | Mathematical Modeling | Results | Conclusions |



## Parametric Study: $\hat{P}_A \sim 1$ Microbubbles covered with phospholipid: <u>Effect of adhesion</u>



- As the adhesion parameter increases both repulsive and maximum attractive forces increase.
- The shape of the shell at maximum attraction is significantly deformed with the position of the pole at a value higher than the initial.
- The competition between the thinning of the liquid film and the increase of the gas pressure results an increase in in-plane stresses.
- The latter generate a linear response in f-d curve with slope higher than Reissner slope.

[Lytra & Pelekasis, Phys. of Fluids, 2018]

| Introduction | Mathematical Modeling | Results | Conclusions |

