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Contrast agents (CA) are microbubbles covered with an elastic shell, usually made of 

polymeric or lipid biomaterials providing mechanical strength and decelerating the gas 

dissolution in vivo. Their initial diameter ranges from 3 to 5 μm and their thickness from 10 

to 40 nm1-2 . CA microbubbles have been successfully used the last decades for imaging 

of human organs and they are considered as drug/gene carriers for therapeutic 

application of diseases. In both cases the elastic properties of the shell are the key 

parameters that control their behavior in ultrasound environment through arteries and 

tissues. The present work aims at: 

 

• The estimation of Young’s and bending modulus 

• The numerical investigation of their static response (FEM & Abaqus) 
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Theoretical Formulation 

Normal and Tangential Force Balance3 

Isothermal Gas Compression 

Position of Mass Center 

Kinematic Condition 

Constitutive Law6 

Boundary Conditions 
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Numerical Implementation 

Finite Elements with B-Cubic Splines as Basis Functions4 

Newton-Raphson Iterations 
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Asymptotic Analysis 
Point Load5-6 

Plane Contact 
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kc=0.61 N/m 

Experimental  

Values 

Asymptotic Estimation 

Point Load7 

Asymptotic Estimation 

Plane Contact 

Do [μm] E [MPa] h [nm] E [Mpa] h [nm] E [MPa] h [nm] 

2.6 10-16 20 8.5 25 20 16 

3.5 4-8 26 12 26 5 26 

4.1 2.5-6 31 6.1 31 4.6 33 

kc=1.14 N/m         

3.1 6-10 23 3.4 35 10 19 

3.2 6-10 24 14 20 6.7 27 

4.0 2.5-6 30 4.7 30 4.7 28 

4.9 1-3 37 4.5 31 4.9 28 

5.5 1-3 41 1.7 47 2 40 

Conclusions 
1. It is possible to estimate both Young’s modulus and shell thickness by a single force-

deformation (f-d) curve. 

2. The point load can qualitatively predict the f-d curve, while the abaqus calculation also 

predicts transition from a linear (Reissner) to a non linear (Pogorelov) regime. 

3. Reliable estimates of the shell thickness and elasticity modulus of polymeric shells are 

obtained in this fashion 

4. Relaxing the assumption of a point load provides reliable estimates for the pressure 

distribution, in accordance with previous investigations12, and predicts reduced 

displacements when crater formation takes place, in comparison with the point load 

distribution. 

5. Consideration of the surface tension delays the transition from Reissner to Pogorelov 

regime. 

6. Proper accounting of adhesion forces is expected to capture the response of 

phospholipid shells by eliminating the Pogorelov regime in favor of the gas 

compressibility dominated regime in the f/d curve at large external loads. 
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