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Applications: 

Medical Imaging & Drug Delivery 

 Strong Backscattered Acoustic 

Signal 

 Biocompatibility 

1. Ferrara, K., R. Pollard, and M. Borden, Ultrasound Microbubble Contrast Agents: Fundamentals and Application to Gene and Drug Delivery. Annual Review of Biomedical Engineering, 2007. 9(1): p. 415-447. 

2. Kaufmann, B.A., K. Wei, and J.R. Lindner, Contrast Echocardiography. Current Problems in Cardiology, 2007. 32(2): p. 51-96. 

3. Unger, E.C., T.O. Matsunaga, T. McCreery, et al., Therapeutic applications of microbubbles, European Journal of Radiology, 2002. (42) : p. 160–168 
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   Polymeric Shells       Lipid Shells    

Initial Radius: Ro 

 

Shell Thickness :h 

 

 

 

Elastic Modulus: E 

 

Bending Modulus: 

 

 

 

Independent parameters: 

E, h 

Initial Radius: Ro 

 

 

 

 

 

Area Dilatation: x=3Eh 

 

Bending Modulus: 

kb: Independent variable 

 

 

Independent parameters: 

x, kb 
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Atomic Force Microscopy 
(In collaboration with  

Un. of Edinburgh) 

Static Measurements Ultrasound Measurements 

Experiments 

Cantilever 

Laser 

Beam 

Photodiode 

Microbubble 



Scope of this work 

 

 

• Simulation of static response of microbubbles 

 

• Comparison with experimental measurements 

 

• Study of mechanisms that deform the shell 

 

• Estimation of elastic properties 

 

• Optimization of the design of bubbles 
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4. Timoshenko, S.P. and S., Woinowsky-Krieger, 1959 Theory of plates and shells Mc-Graw-Hill Int. Editions. 

5. Barthes-Biesel,  D.,  A.  Diaz,  and  E.  Dhenin,  Effect of  constitutive  laws for two - dimensional membranes on  flow-induced capsule deformation  Journal of  Fluid Mechanics, 2002.  460: p. 211 – 222 

6. Tsiglifis, K., Numerical simulation of bubble dynamics in response to acoustic disturbances, Doctoral Dissertation, in Dpt of Mechanical Engineering. 2007, Un. of Thessaly: Volos. 

7. Serpetsi,, S., Numerical study of mechanical properties of microbubbles with elastic shell-application in Atomic Force Microscopy, Master Thesis, in Dpt of Mechanical Engineering. 2011, Un. of Thessaly: Volos.  

 



Dimensionless Numbers 
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8. Pelekasis, N.A., J. A. Tsamopoulos & G. D. Manolis,  Equilibrium shapes and stability of charged and conducting drops.  Phys. Fluids , 1990. A2(8), 1328  

9. Tsigklifis, K. and N.A. Pelekasis, Parametric Stability and dynamic buckling of an encapsulated microbubble subject to acoustic disturbances. Phys. Fluids, 2011. 23, 012102 
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Finite Elements 

 

• Method of Weighted Residuals 

 

• Basis Functions: 

     Β-Cubic Splines 

 

• Solution of Linear System 

    of Equations:                                Newton-Raphson Iterations 

 

• Calculation of Integrals:              4 Points Gauss Quadrature 

 

• Validation: Calculation of the critical buckling load and the 

volume of the microbubble 
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Uniform External Overpressure (Benchmark Calculations) 

10.  Knoche, S. and J. Kierfeld, Buckling of spherical capsules. Physical Review E, 2011. 84(4): p. 046608 
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Results Outline 

 

• Estimation of elastic properties for polymers and lipids 

 

• Deformation of the microbubble subject to a point load 
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Polymeric Shell 

11. Reissner, E., Stresses  and  small  displacements  of  shallow  spherical shells: I and II, Journal of Mathematics and Physics, 1946. 25: p. 279-300 

12. Pogorelov,  A.V.,  Bendings  of  Surfaces  and  Stability  of  Shells,  American Mathematical Society, 1988 

13. Glynos,  E.,  et  al.,  Nanomechanics  of  Biocompatible  Hollow  Thin-Shell  Polymer Microspheres, Langmuir, 2009. 25(13): p. 7514-7522. 

Young’s Modulus Thickness 

Asymptotic Equations 

6 GPa 31 nm 

Experiment 

5 GPa 30 nm 
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 Adhesive forces (F≤10 nN) 

 Elastic forces     (F>>10 nN) 
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Polymeric Shell-Comparison of FEM & AFM Experiment 

1. Non linear regime (F ≤10nN)  

Probably due  to adhesive 

forces. Not included in the 

fem model. 

2. Linear regime  

Elastic forces-flattened shape 

1 

2 

3 

3. Non linear regime 

 Elastic forces-crater formation. 

Discrepancies between FEM 

simulations and experiments 

probably due to 3D instabilities 

and load distribution. Not 

included in the fem model. 
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Polymeric Shell-Post Processing FEM Results 

ΔP 

Elasticity dominates 

over gas compressibility 

Dimple formation for 

increasing loading 



Lipid Shell-AFM Experiment 

14. Buchner Santos E. et al., Nanomechanical Properties of Phospholipid Microbubbles, Langmuir, 2012. 28 (13): p. 5753-5760. 
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1 

2 

3 

1. Non linear regime, probably due to adhesive forces 

(not included in the model) where capillarity balances 

elasticity. 

2.  An extensive linear regime – Capillarity stretching 

and bending equally important  Reissner ? 

3. Non linear regime due to compressibility 



15. Buchner Santos E. et al., Nanomechanical Properties of Phospholipid Microbubbles, Langmuir, 2012. 28 (13): p. 5753-5760. 
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Lipid Shell-Comparison of FEM & AFM Experiment 
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Performing a parameter sweep 

in the           space and comparing 
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curve provides shell parameters 
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Lipid Shell-Post Processing FEM Results 
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ΔP 

Gas compressibility is 

comparable to elasticity 

Crater formation for 

increasing loading 
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 The experimental curves of polymeric microbubbles exhibit 

three different regimes. 

 

 Adhesive forces and stretching control the first non linear 

regime. 

 

 Elastic forces (stretching and bending stiffness) determine the 

initial linear and nonlinear regime (Reissner-Pogorelov). 

 

 Gas compressibility controls microbubble and determines 

nonlinear regime at large deformations. 

 

 Balance between above forces determines transition between 

Reissner and Pogorelov regimes and can be used for 

estimating elastic modulus (E) and shell thickness (h). 

Polymeric Shell 
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 Balance between capillarity and stretching determines the first 

non linear regime. 

 

 Gas compressibility is of the same order as elastic forces at 

large deformations, increasing the stiffness of the bubble. 

 

 In lipid monolayer shells adhesion forces may be of the same 

order as elastic forces over a longer force range 

 The shell is stabilized and crater formation/transition to a 

 Pogorelov type regime is probably delayed              

 For large enough forcing, buckling of the shell takes place 

 leading to crater formation 

 

 Lipid monolayer shells do not necessarily obey a Reissner-

Pogorelov type transition. Elastic properties may be estimated 

by a transition from adhesion dominated to Pogorelov regime. 

 

Lipid Shell 
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Goal of current work 

Modeling of contact between microbubble and cantilever 

• Estimation of load distribution 

• Estimation of deformation of the cantilever 

• Account for capillary forces (validation of adhesion regime) 

• Validation of adhesion to Pogorelov transition pattern 



16. Landau, L.D., et al., Theory of Elasticity  1986: Butterworth-Heinemann. 
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• Modeling of the contact area between the cantilever of the 

AFM and microbubble (load distribution). 

 Linear elasticity for the 

deformation of cantilever: 

(BEM) 
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 Kinematic condition at 
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17. Johnson, K.L.,  K. Kendall  and A.D. Roberts,  Surface Energy and the Contact of  Elastic Solids  Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1971. 324(1558): p. 301-313 

• Consideration of capillary forces in the contact area 
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Normal load component on the bubble: 

Load on the cantilever: 

 G N A s sP P P qe n         
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Total force on the bubble: N

A
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Capillary stresses may counteract compressive elastic stresses 

and delay crater formation. 
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• Force required for zero deformation: 

 

•  When contact length is small, capillarity balances the elasticity: 

 and determines a non linear regime in force-deformation curve. 

 

 

 

 

 

 

• The above formulation is currently studied via numerical 

simulations. 
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18.  Shanahan, M.E.R., A Novel Test for the Appraisal of Solid/Solid Interfacial Interactions. The Journal of Adhesion, 1997. 63(1-3): p. 15-29 



Future Research 

 

3-D Modeling of the deformation of the microbubble 

subject to static load. 

 

19. Vella, D., et al.,  Wrinkling of Pressurized Elastic Shells   Physical Review Letters, 2011. 107(17): p. 174301 
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