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| Polymeric Shells | | Lipid Shells |
Geometry

Initial Radius: R, Initial Radius: R,

Shell Thickness :h

Elastic Properties

Elastic Modulus: E Area Dilatation: x=3Eh
Bending Modulus: Bending Modulus:
Eh? K,: Independent variable
k, = >
12(1-v7)
Independent parameters: Independent parameters:
E, h X1 kb
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[ Experiments]
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/ Scope of this work \

« Simulation of static response of microbubbles
« Comparison with experimental measurements
 Study of mechanisms that deform the shell
 Estimation of elastic properties

« Optimization of the design of bubbles

. /
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Force Balance
AR, = (P, + AP — Py )i
AF, =0
Bending Moments Balance
G=V,-m-(L-i)

AF = AP =

m =k, (K +vK;)/4;, K =24k —k"

Isothermal Compression
P.V,=P.V

Neo-Hookean Constitutive Law
7 =G, “—V(ﬁ -1)
1-v
Boundary Conditions
or 0°0
-1 Axis of Symmetry 50 O - OE?
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Dimensionless Numbers

5_ P.mR, resistance due to pressure changes
X resistance due to stretching
- k,  resistance due to bending
° xR? resistance due to stretching
Polymeric Shell Lipid Shell
p=fanls 0(10°-107) p=Fan 0(107%-10°)
Eh Eh
h Y k
( =| — 2 _10°° . b 5 103
kb_[sRoj 0(10°-107) kb_x_Rg 0(10°-10°)
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Finite Elements

Method of Weighted Residuals J-€=R J:(2N+7)x(2N+7)

N number of elements
 Basis Functions: (4,j=1
B-Cubic Splines B (t,) =11 j=i+1
i\"] ! -
_ _ 0,j=i+2
 Solution of Linear System
of Equations: Newton-Raphson Iterations
 Calculation of Integrals: 4 Points Gauss Quadrature

volume of the microbubble

Validation: Calculation of the critical buckling load and the
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Uniform External Overpressure (Benchmark Calculations)
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/ Results Outline \

 Estimation of elastic properties for polymers and lipids

« Deformation of the microbubble subject to a point load

| AP
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Polymeric Shell
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4 Eh? Young’s Modulus Thickness
Reissner'seq. F = oz A : :
[3(1_‘/2)] ° R, Asymptotic Equations
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E°h® ) _
Pogorelov's eq. F = o7 A Experiment
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Polymeric Shell-Comparison of FEM & AFM Experiment

Expérimént ' ' ' 3 ' '
400 e FEM
|— - — FEM-Shifted -

300

Force (nN)
N
3

- =
— E
-
ol

100 -

0 10 20 30 40 50 60 70
Deformation (nm)

1. Non linear regime (F <10nN) 3. Non linear regime

Probably due to adhesive Elastic forces-crater formation.
forces. Not included in the Discrepancies between FEM
fem model. simulations and experiments
2. Linear regime probably due to 3D instabilities
Elastic forces-flattened shape and load distribution. Not

Included in the fem model.
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Polymeric Shell-Post Processing FEM Results
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Lipid Shell-AFM Experiment
12{k=0040NIM
1D _=2.9E-6 m

—_— Experiment-

1

S oty

1. Non linear regime, probably due to adhesive forces
(not included in the model) where capillarity balances
elasticity.

2. An extensive linear regime — Capillarity stretching
and bending equally important — Reissner ?

3. Non linear regime due to compressibility

14. Buchner Santos E. et al., Nanomechanical Properties of Phospholipid Microbubbles, Langmuir, 2012. 28 (13): p. 5753-5760.
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Lipid Shell-Comparison of FEM & AFM Experiment
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15. Buchner Santos E. et al., Nanomechanical Properties of Phospholipid Microbubbles, Langmuir, 2012. 28 (13): p. 5753-5760.

’@ Introduction | Theoretical Analysis | Numerical Solution | Results | Conclusions | Current & Future Research



Lipid Shell-Post Processing FEM Results
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Polymeric Shell

= The experimental curves of polymeric microbubbles exhibit
three different regimes.

= Adhesive forces and stretching control the first non linear
regime.

= Elastic forces (stretching and bending stiffness) determine the
Initial linear and nonlinear regime (Reissner-Pogorelov).

= Gas compressibility controls microbubble and determines
nonlinear regime at large deformations.

= Balance between above forces determines transition between
Reissner and Pogorelov regimes and can be used for
estimating elastic modulus (E) and shell thickness (h).
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Lipid Shell

= Balance between capillarity and stretching determines the first
non linear regime.

= Gas compressibility I1s of the same order as elastic forces at
large deformations, increasing the stiffness of the bubble.

= In lipid monolayer shells adhesion forces may be of the same
order as elastic forces over a longer force range
The shell s stabilized and crater formation/transition to a
Pogorelov type regime is probably delayed
For large enough forcing, buckling of the shell takes place
leading to crater formation

= Lipid monolayer shells do not necessarily obey a Reissner-
Pogorelov type transition. Elastic properties may be estimated
by a transition from adhesion dominated to Pogorelov regime.
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4 Modeling of contact between microbubble and cantilever
 Estimation of load distribution
 Estimation of deformation of the cantilever
« Account for capillary forces (validation of adhesion regime)
\. Validation of adhesion to Pogorelov transition pattern Yy
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* Modeling of the contact area between the cantilever of the
AFM and microbubble (load distribution).

a Linear elasticity for the
deformation of cantilever:

(BEM) 0<r'<a, O
_|_

o Kinematic condition at

the interface: Ug, (r')+u,, (r')+z, =cons.

16. Landau, L.D., et al., Theory of Elasticity 1986: Butterworth-Heinemann.
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« Consideration of capillary forces in the contact area

Normal load component on the bubble; P, —P, —P, =V, -(g+ Ciés)+ oV - i

Load on the cantilever: P =P, +0V-ii

Total force on the bubble: F = gfjﬁ P, NdA
A

1 0 o
! 0<90 >90°

Capillary stresses may counteract compressive elastic stresses
and delay crater formation.

17. Johnson, K.L., K. Kendall and A.D. Roberts, Surface Energy and the Contact of Elastic Solids Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1971. 324(1558): p. 301-313
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« Asymptotic Analysis

~ 327EhA°R
1-v
» Force required for zero deformation: F =-2zR o

F

°0° +47R 660’ -27R o

« When contact length is small, capillarity balances the elasticity:
and determines a non linear regime in force-deformation curve.

327EhA’R,
1-v
Deformation A/ R, ~ 6* — F ~ (A/R,)’in this regime

47R c6° ~ 0° as 8 —0

« The above formulation is currently studied via numerical
simulations.

18. Shanahan, M.E.R., A Novel Test for the Appraisal of Solid/Solid Interfacial Interactions. The Journal of Adhesion, 1997. 63(1-3): p. 15-29
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4 N

Future Research

3-D Modeling of the deformation of the microbubble
subject to static load.

o !

19. Vella, D., et al., Wrinkling of Pressurized Elastic Shells Physical Review Letters, 2011. 107(17): p. 174301
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