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Scope & Abstract

The present poster presents two theoretical models of the static response of coated In the contact problem, a long range attractive-short range repulsive potential describes the
microbubbles, (MB), also known as contrast agents. In the first model the MB is subject to a thinning of the intervening liquid film as the cantilever approaches the shell. We compare the
distributed load in order to describe the response under the atomic force microscope (AFM), while in numerical results with available AFM data and we propose a novel method via asymptotic analysis
the second the MB is subject to a uniform static load. for the estimation of elastic properties from the force-deformation curve.

In both models , two types of MB are considered, those which are coated with polymer and those In the uniform pressure model appropriate stability calculations reveal a rich bifurcation diagram,
with lipid monolayer. The equilibrium equations are solved in axisymmetric form via FEM and two corresponding to non-spherical shapes, which is in agreement with dynamic calculations when static
dimensionless numbers emerge: the dimensionless bending and dimensionless pressure. We use the equilibrium is reached.

B-cubic splines as basis functions and we perform simple or arc-length continuation. In both cases, parametric study in the space of dimensionless numbers is performed.
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