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Microbubbles covered with lipid monolayer 
Results 

Conclusions 

Scope & Abstract 
There are two major families of coating materials that are usually employed in medical applications: polymeric and 
lipids. Polymeric shells are characterized by higher area dilatation modulus and shell thickness in comparison with 
shells covered with lipids. The latter are softer and exhibit significant deformations when subjected to forces as low 
as several nN. The present study presents calculations of the static deformation of a coated microbubble that is 
compressed by a rigid surface, in order to assist the interpretation of Atomic Force Microscopy measurements 
conducted to provide estimates of the shell elastic properties. 

• A contact model is proposed for microbubbles covered with a polymeric shell based on the classic shell 
mechanics1. 

• For microbubbles with a lipid shell a model that accounts for intermolecular forces is employed, by 
introducing an adhesive potential2 which describes the disjoining pressure between the shell and the AFM 
cantilever. Thus, an additional resistance to the cantilever’s advancement is introduced in order to account 
for the ultrathin water layer that occupies the space between the shell and cantilever, as a result of their 
hydrophilic nature, and resists thinning as the external pressure increases.  

• In both models axisymmetry is assumed with respect to the vertical axis and symmetry in the equator. The 
resistance to gas compression is accounted for as well as the non-linearity of the constitutive law for the 
elastic shell3. 

  
Experimental 

Values6 

Asymptotic 
Estimation7 

Shell 
Diameter, 
 Do [μm] 

E [GPa] h [nm] E [GPa] h [nm] 

2.6 10-16 20 8.5 25 
4.1 2.5-6 31 6.1 31 
3.1 6-10 23 3.4 35 
4.0 2.5-6 30 4.7 30 
5.5 1-3 41 1.7 47 

Asymptotic Analysis-Shell properties estimation 
Microbubbles covered with polymer 

The force-deformation (f-d) curves obtained with an AFM6 for microbubbles covered with polymer exhibit initially  a linear 
regime followed by a non-linear curved downwards. This behavior conforms with the classic transition from the linear, Reissner, 
to the nonlinear, Pogorelov, regimes in the f-d curves. Employing analytical expressions from Reissner and Pogorelov theory1 the 
shell thickness (h) and Young modulus (E) can be estimated with excellent agreement7 with the experimentally obtained values, 
Fig. 4 and Table 1.  

This work was performed in the framework of the operational program: «Education and 
lifelong learning» - «Aristeia I» and was cofounded by the European Union (European 
Social Fund) and national resources. 
The authors wish also to thank Dr. V. Koutsos, Dr. V. Sboros and Dr. E. Glynos for fruitful 
discussions on the AFM and for kindly providing the experimental (AFM) data. 
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Theoretical Modelling 
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 Classic Contact Problem 

Fig.1 Distribution of the 
contact pressure. 

Fig.3 Distribution of the disjoining pressure & 
Adhesive Potential. 

 Fig.2 Validation of the classic 
 contact model4. 

The above set of equations is solved via Finite Element Method by using the B-cubic 
Splines as basis function and performing simple and arc-length continuation. The 
Fortran code has been validated with the analytical solution of Updike & Kallins4 and 
the critical buckling load, when the shell is compressed by a uniform pressure load5. 

Numerical Simulation-Classic contact formulation 
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The FEM f-d curves for polymeric shells with the classic contact model exhibit the same regimes, characterized by shapes that 
are flat or bended in the pole region, Fig 5. The linear regime loses stability after the buckling point due to excessive 
compression and the solution in this regime is characterized by an additional unstable eigenvalue. This behavior is in agreement 
with the total energy of each branch, which is higher in the flat solution after the buckling point (d=60 nm), Fig. 6. 
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• Reissner’s Equation: 

 
 
 
 
 
 

• Pogorelov’s Equation: Fig.4 Experimental f-d curve with  
fitting of Reissner & Pogorelov eq. Table 1 Comparison of the  experimental and calculated 

 via the Reissner-Pogorelov eq. values of Young modulus 
 and shell thickness. 

Fig.5 Comparison of numerical &  
experimental6 f-d curves 

Fig.6 Total energy of flat and 
buckling solutions 

Numerical Simulation-Intermolecular forces model 
The f-d curve obtained with the intermolecular forces model (red curve Fig. 7) for a microbubble covered with lipid is directly 
compared against the one obtained with the AFM8 (black curve Fig.7). The two curves coincide with satisfactory agreement up to 
deformation of 300 nm and shell buckling is not detected, Fig. 8. This behavior conforms well with the Reissner response pattern. 
Due to the relatively small bending to dilatational stiffness ratio,  and the stabilizing effect of adhesion onto the cantilever, the 
Pogorelov regime is bypassed and the Reissner curve persists until relatively large forces. Repeating the calculation employing the 
Reissner model4 produces almost the same  response, (green curve, Fig 7). 
The variation of the disjoining pressure in the contact area between the AFM and the shell indicates that the liquid film height in 
not constant, Fig.9  and the its maximum value around the end of contact area is in agreement with the classic contact model. 

Fig.7 Comparison of numerical &  
experimental8 f-d curves. 

Fig.8 Microbubble in deformed 
configuration for selected values 
of deformation. 
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Parametric Study 

Fig.9 Distribution of the disjoining  
pressure along the shell surface. 

Effect of adhesive energy Wo 
• When the adhesion (Wo) is high, buckling is postponed (Fig. 13a) or 
       even bypassed (Fig. 13b). 
• The weak adhesion gives the same results with the classic contact model. 

• The classic contact model is a simple and sufficient theoretical tool to investigate the response of polymeric coatings. 
• The static response of such microbubbles is obtained via FEM simulations based on the above model, in the form of two 

intersecting solution braches: the flat and the buckling, with the former losing stability at the buckling point. 
• The elastic properties of  microbubbles covered with  thin polymeric shells can be estimated from AFM6 measurements by 

the transition from the flat (Reissner) to the buckled (Pogorelov) branch. 
• The intermolecular forces model is a novel tool that recovers the experimental f-d curve for microbubbles covered with 

either polymeric or phospholipid monolayer shells. 
• For the experiments8 with lipid monolayer  shells  buckling in not detected – The static response initially follows the linear 

Reissner solution where bending stiffness  dominates. 
 

• The parametric analysis shows that the dimensionless bending modulus controls the buckling point, but  in case of strong 
adhesion buckling is postponed to higher values of force and deformation or bypassed. 

• Beyond a certain  level of deformation resistance to compression dominates rigidity and an almost quadratic (Δ2.5) response 
pattern is recovered. 

• The elastic properties, namely area dilatation and bending modulus, of phospholipid shells can also be estimated from AFM8 
measurements by the transition from the bending stiffness (Reissner) regime to gas compressibility dominated regime. 

• Based on the above analysis, it can be concluded that microbubbles covered with lipid monolayer behave like viscoelastic 
solids. 

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )

( )

2 22 2 2 2

1
1 2 1 2

2 2

Elastic Energy Functions:

Hook 1 2 1 1 1 ,
4 1

1 2Mooney-Rivlin , 1 2 1
2 1 1

Bending Moments: , , , direction,

      

HK s
s s

MR MR

b
ii i j

j

Gw

G Iw w I I b I b I
I I

km K K i j s

ϕ ϕλ ν λ λ λ
ν

ν ϕ
λ

 = − + − − + −  −

    +
= = − + + + + +    + +    

= + →

( ) ( )

1 2
3

2

Green-Lagrange deformation               tensor           ,  Invariants of 

, , ,
2 1 3 12 1s MR b

I I
EhG G Eh kχ χ χ

ν ν
= = = =

+ −

( )
4 2

0

,            Unknown line load, classic contact model
Π

,  Disjoining pressure, Intermolecular forces model

4

extP
W W y
n y n

W W y W
y y
Α Αδ δ


= ∂ ∂ ∂− = − ∂ ∂ ∂

    
= = −    

     

( ) ( )

( )

( )

1Normal Force Balance : Π

1Tangential Force Balance : 0,

, sin

Isothermal Gas Compression:

G A s ss BW s

ss
s ss s

s

G f A i

q
n P P k k W n

s

t k q
s s

q m I nn r

P V P V

ϕ ϕϕ

ϕϕ

γ γ

σ
τ τ γ

σ
τ σ τ τ

σ

σ θ

∂
− = + + + ∇ ⋅ − +

∂
∂ ∂ − + − + = ∂ ∂ 

= ∇ ⋅ ⋅ − =

=



 





 

( ) ( ) ( ) ( )BC: 0 and 1 0 and 1 0, 0 0, 1
2

rξ ξξ
πξ θ ξ θ ξ θ ξ= = = = = = = =

( )cos
Kinematic Condition: 0,  at =  in classic contact modelc

d r
d

θ
θ θ

ξ
=

o. 
The problem formulation is rendered dimensionless by introducing the characteristic
length scale, R Then the solution depends mainly on three dimension

ˆ ˆˆ ˆ ˆ, ,

less p

;

arameters, 

ˆand :b A BW b
o

krk P W r k
R

γ = = 2
ˆ ˆ ˆ; ; 1; .ˆ;b A o BW
A BW

o

WWP RP
R

γ
χ χ χ χ

γ χ= = ==

Total force on the shell due to intemolecular forces: 2 m z
A

WF k W dAe
n

∂ = − + ∂ ∫




Fig.13 Comparison of f-d curve between the classic contact problem and the intermolecular 
 forces model with strong (Wo=10-1 N/m) and weak (Wo=10-4 N/m) adhesion 
 (a)                      , (b)                     . 5ˆ 3 10bk −= ⋅ 4ˆ 3 10bk −= ⋅

(a) (b) 

Effect of dimensionless bending modulus b̂k
• Smaller values of dimensionless bending 

modulus lead to buckling of the shell. 
• The buckling point is  shifted to higher values of 

deformation  as         increases. 
• The disjoining pressure is concentrated in the 

dimple of the buckling. 
• Simulations for the parameter range relevant to  

polymeric shells reproduce the  results of the 
classic contact model, red curve Fig. 5. 

b̂k

Fig.10 F-d curves for different values 
 of dimensionless bending modulus. 

Fig.11 Deformed shape  
with buckling. 

Fig.12 Distribution of the 
disjoining pressure. 

Fig.14 Effect of gas compressibility on f-d curve. 

Effect of gas compression ˆ
AP

• The FEM f-d curve is initially 
linear, recovering the Reissner 
regime. 

• In higher deformations an 
almost quadratic response 
(Δ2.5) is recovered. 

• Gas compressibility determines 
the rigidity of the coated 
microbubble. 

• Preliminary parameters estimation based on this procedure 
provides reasonable estimates of the bending  

      and area dilatation                         moduli. 
 

( )164.42 10bk Nm−= ⋅
( )0.05 mχ = Ν

mailto:pel@uth.gr
http://contrast-aristeia.mie.uth.gr/
http://contrast-aristeia.mie.uth.gr/
http://contrast-aristeia.mie.uth.gr/
http://contrast-aristeia.mie.uth.gr/

	Slide Number 1

