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Microbubbles (Contrast Agents) 
o Bubbles surrounded by an elastic membrane for stability

o Low density internal gas that is soluble in blood

o Diameter 1 to 10 μm

o Polymer, lipid or protein (e.g. albumin) monolayer shell of thickness 15-200 nm

Motivation
o Contrast perfusion imaging   check the circulatory system by means of 

contrast enhancers in the presence of ultrasound (Sboros et al. 2002; 
Frinking & de Jong, Postema et al., Ultrasound Med. Bio. 1998, 2004) 

o Sonoporation   reinforcement of drug delivery to nearby cells that stretch 
open by oscillating contrast agents (Marmottant & Hilgenfeldt, Nature 2003)

o Micro-bubbles act as vectors for drug or gene delivery to targeted  cells
(Klibanov et al, Adv. Drug Delivery Rev., 1999; Ferrara et al. Annu. Rev. 
Biomed. 2007)



• Need for specially designed contrast agents 
Controlled pulsation and break-up for imaging and 
perfusion measurements

• Chemical shell treatment for controlled wall adhesion for 
targeted drug delivery

• Need for models covering a wider range of CA behavior 
(nonlinear material behavior, shape deformation, buckling, 
interfacial mass transport etc, compression vs expansion 
only behavior, nonlinear resonance frequency- thresholding)

• Need to understand experimental observations and 
standardize measurements in order to characterize CA’s   

Contrast enhanced perfusion 
imaging, via a sequence of  low 
and high Mechanical Index 
(MI) ultrasound pulses

/ Ac fMI p

Lipid monolayer

PEG



• Lipid monolayer 
shells are amenable to 
chemical manipulation 
for targeting and drug 
delivery 

• Compound shell 
mechanical behavior 
not really known



• Shell is important for designing and controlling the behavior of contrast agents

Static Response

• They buckle when gas diffuses 
through the shell Borden & Longo, 
Langmuir 2002

γ0: surface tension of substrate

γ:  surface tension of lipid surfactant 
monolayer

Wang et al. J. Phys. Chem. 1996

• Phase transitions occur as the available 
area per lipid molecule decreases, π=γ0-γ

Condensed solid phase

Condensed liquid phase

π-Α isotherms in a Langmuir trough

Phase Diagram

• They regain sphericity via a zippering 
mechanism that binds the 
hydrophobic tails of lipid monolayer

• Borden & Longo, Langmuir (2006Shedding of  excess lipids (lipid shedding or budding)
• Lee et al., Annu. Rev. Phys . Chem (2008) Formation of  bilayers (reversibility)



Static Response during AFM Measurements

• Estimates of bending and stretching 
elasticities can be obtained based on AFM 
measurements of the static response of a 
coated microbubble 
(Ferry & Weinkamer, Polymer, 2007;  Lulevich et al. J. 
Chem. Phys, 2004; Glynos, Sboros & Koutsos, Mat. 
Sci. Eng. B, 2009) 

• Contrast agent with polymer and phospholipid 
shells are mainly examined

Schematic of an AFM setup for compression of 
single hollow microsphere with a tipless 
cantilever

Experimental investigation of a water 
filled polysterene sulfonate capsule 
(PAH-PSS) (Ferry & Weinkamer 2007)

Experimental investigation of a polymeric 
thin-shell hollow microsphere (Glynos et 
al. 2009)

Provided the shell 
thickness is known 
Reissner’s theory is 
used to fit the linear 
part for the shell 
stiffness 

Need to identify the 
major force balances 
in different force 
ranges



Acoustic response of contrast agents

• Acoustic backscatter and attenuation experiments are employed in order to estimate shell 
elasticity and viscosity  (van der Meer et al. JASA 2007,  Sarkar et al. JASA 2005)

• Abrupt vibration onset (Emmer et al. Ultr. Med. Biol. 2007)  - Reduction in resonance 
frequency with increasing sound amplitude, Overvelde et al. Ultr. Med. Biol. 2010

• Compression only behavior at low amplitudes followed by expansion only at large 
amplitudes, Marmottant et al. JASA 2005



• Parametric shape mode excitation with or without compression only behavior (Dollet 
et. Al. Ultr. Med. Biol. 2008) – Harmonic and subharmonic shape mode excitation

• Rich harmonic content in the microbubble response (Paul et al. JASA 2010) is also 
useful in characterizing them – Sound amplitude threshold for radial and 
shape subharmonics provides possibility for parameter estimates

• During compression only microbubble is only deformed during compression

M. Overvelde,                 
Ph. D Thesis  (2010)   
Univ. Twente

AcP 40kPa, 0.4
BR 14

 




Polymer or lipid shell

ρS, μS, GS, δS etc.

Air, ideal gas
P0=PSt

δS

Liquid 

ρL, μL

P∞(t)=PSt+Pac(t)

Schematic diagram of pulsating contrast agent



Available Models for the Shell 

Viscoelastic solid
• Church: viscoelastic with constant GS, μS, δS and negligible inertia
• de Jong: Linearized Church model
• Church-Hoff: Church model with negligible shell thickness to radius ratio
• Edwards viscoelastic model: Dilatational elasticity ΕS=3GS, 

dilatational viscosity μS, surface tension γ
• Marmottant  et al model: Dilatational elasticity ΕS=3GS, dilatational 

viscosity μS, Rbuckling

• Pelekasis & Tsigklifis: Viscoelastic solid model that accounts for 
nonlinear elastic effects (strain softening or strain hardening 
behavior) Bending elasticity, kB, is added in order to capture 
deformation and break-up of shells

• Strain softening interfacial model (Sarkar et al.) : Viscoelastic solid model 
that accounts for nonlinear elastic effects (strain softening or strain 
hardening)

Viscoelastic liquid
• Doinikov & Dayton: Viscoelastic liquid model for lipid shells, 

relaxation time λS, dilatational viscosity, μS 



• Hooke’s law properly describes behavior of stiff polymeric shells
Strain softening behavior captures most of the reported effects 
associated with phospholipid monolayers (except for compression only 
behavior) – Area density of lipid monolayers increases/decreases during 
compression/expansion and their stiffness increases/decreases as well 

• Compression only is associated with shell deformation or bending and we 
postulate the reversible formation of bilayers as the mechanism for the 
effective strain hardening behavior of the shell that is manifested during
compression only pulsations

• So when bending occurs and local curvature increases there is a sort 
of phase transition that occurs leading to formation of bilayers and 
switching to strain hardening behavior (lipid bilayers are strain 
hardening i.e. they become softer at compression due to less available 
contact area for the hydrophobic chains to interact)

• We would like to test this theory against the available experimental data 
from static and dynamic response of contrast agents
Then we can estimate the appropriate parameters and achieve optimal 
design of new agents 



o Isothermal pulsations  (γ~1)     ,g g Eq EqP t V t P V 

o The Keller-Miksis model is used 
for the surrounding liquid

o Normal force balance on the shell-
liquid interface relating jump in 
normal stress to the visco-elastic 
tensions on the shell
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o Shell stress-strain constitutive law 
Kelvin-Voigt law –Hooke’s law with 
viscosity
Mooney-Rivlin law, strain-softening 
material   
Skalak law, strain-hardening
material
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o Characteristic space and time scales: 
o Dimensionless parameters:
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Elastic Tensions

Isotropic tension

Green-Lagrange deformation te: ensor

Green & Zerna, Dover 2002,     Barthes-Biesel et al., JFM 2002,     Pozrikidis, CUP  1992



o Strain hardening material (e.g. red blood-cell            
membrane)        Skalak law

o Strain softening material (e.g. rubber like 
material)            2D Mooney-Rivlin law

Shell Constitutive Laws-Isotropic Tension

o Linear behavior          Hooke’s law 
Kelvin-Voigt law with viscous stresses
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 Marmottant model

         Same shell elasticity  
 Hooke's law



Viscous Tensions
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Radial Pulsations - Effect of sound amplitude

ρl=998 kg/m3, σ=0.045 kg/s2, R =3*10-6 m, Gs=35 MPa, μS=0.6 kg m-1s-1, δ=15 nm
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Strain softening shells (e.g. lipid monolayers prefer to be at expansion “expansion 
only behavior” – Their resonance frequency decreases with sound amplitude

Strain hardening shells (e.g. lipid bilayers prefer to be at compression “compression 
only behavior” – Their resonance frequency increases with sound amplitude
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• Estimation of Gs, μς, in the standard fashion in the small amplitude regime
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 Req=3, b=0
 Req=3, b=0.5
 Req=3, b=1
 Req=5, b=0
 Req=5, b=0.5
 Req=5, b=1

Cl=1500 m/s, Pst=101325 Pa, γ=1.4, ρl=998 kg/m3, σ=0.045 kg/s2, νf=1.7 MHz
μl=0.001 kg m-1s-1, μS=0.6 kg m-1s-1, GS=35 MPa, δ=15 nm, u=0, BR14

Abrupt vibration onset

o Estimation of parameter b via high amplitude acoustic measurements

o Abrupt vibration onset is due to the decrease in the resonance frequency with
increasing amplitude (for small bubbles)-softer bubbles exhibit a more abrupt
vibration onset

o Large bubbles never exhibit an abrupt vibration onset since their resonance
frequency is already smaller than the forcing frequency at small amplitudes

vf=1.7 MHz

Tsiglifis & 
Pelekasis, 
JASA 2008



 M-R, b=0

Comparison with experimental measurements (Sarkar et al.)

 M-R, b=0

Cl=1500 m/s, Pst=101325 Pa, γ=1.4, ρl=998 kg/m3, Req =1.6*10-6 m, μl=0.001 kg m-1s-1,
Gs=52 MPa, μS=0.99 kg m-1s-1, δ=4 nm (Sonazoid)

vf=4.4 
MHz

Resonance
Frequency

 M-R, b=0  M-R, b=0

vf=2 MHz

vf=4.4 
MHz

vf=2 MHz

Shell viscosity is 
estimated from 
measurements 
on resonance

Shell viscosity is 
decreased due 
to shear 
thinning effect

At lower 
frequencies 
viscosity 
increases and 
scattering effect 
is overestimated
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Axisymmetric Pulsations

o Axisymmetry
o Ideal, irrotational flow
o Incompressible surrounding fluid with a sinusoidal pressure change in the far field
o Ideal gas in the microbbule undergoing isothermal pulsations
o Very thin viscoelastic shell, often a phospho-lipid monolayer, whose behavior is 

characterized by the constitutive law, e.g. Hookes’s, Mooney-Rivlin or Skalak law
o The shell may be pre-stressed but is always at equilibrium 
o The shell parameters are: area dilatation modulus, χ=3GSδ, dilatational viscosity, μS, 

degree of softness or area compressibility, b or C for strain softening or strain 
hardening shells, and the bending modulus, kB
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Formulation

o Potential incompressible flow 2, 0 u


   

o Isothermal pulsations inside the shell
0 0 , 1.07  PV P V 

o Radial part of the Kinematic condition for interfacial  particles r
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o Force balance on the interface

o Boundary integral equation for the Laplacian
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o Dynamic boundary condition
Via Bernoulli’s law in the liquid
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o Torque balance on the interface

: tensor of bending momentsm( ),sq m I nn
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Constitutive law for bending moments  for axisymmetry and small 
deviations from the reference curvature

Bending measures of strain, Zarda et al. 1977 
Following the theory of plates, and shells

Poisson's ratio:

 
2
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3
, 3d elastic solid of small thickness h, Timoshenko & Krieger 1959
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• For a molecular membrane whose 
bending moments depend on the 
solid angles subtended by 
molecular networks, 

• kB is viewed as bending elasticity, 
distinct from membrane elasticity, 
GS, due to the anisotropy of the 
thin shell



• Linear stability analysis is performed on radially pulsating microbubbles, 
in order to identify 

♦ Critical pressure load for static buckling

♦ Eigenfrequencies of axisymmetric shape modes of coated microbubbles

♦ Phase diagrams,  i.e. amplitude threshold of the acoustic 
disturbance, as a function of bubble radius for fixed forsing frequency, for 
parametric shape mode excitation and dynamic buckling

♦ Effect of pre-stress on the above thresholds

• Numerical simulation of axisymmetric pulsations in order to identify 

♦ Nonlinear response with large deformations from sphericity

♦ Threshold between steady pulsations and transient break-up

♦ Dynamic route to compression only behavior

• Shell viscosity dominates liquid viscosity, Res<<Rel and we can drop viscous stresses 
on the liquid side. 

• Therefore the tangential force balance is satisfied on the shell with the 
viscous and elastic stresses in the shell balancing each other. 

• Consequently this is a uniform approximation and does not require the 
introduction of a boundary layer in the liquid side



Axisymmetric Stability
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Stability of Periodic Solutions (Floquet analysis)

Stability is determined by the eigenvalues μj of the Μonodromy materix M:
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Numerical Methodology 
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Constitutive laws for 
elastic tensions and 

moments
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

Adiabatic gas law

PG

Boundary integral equation 
Boundary elements

( , ),t 

Dynamic boundary 
condition

Finite elements

Movement of Lagrangian 
particles in the radial direction

Finite elements

τab, mab

Normal force and 
torque balances on the 
shell/liquid interface

4th order 
Runge-Kutta
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Tangential force balance on 
the shell/liquid interface 

Finite Elements

Algorithm
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Gas Bubbles

BR14

• Based on the amplitude thresholds for shape deformation kb can be estimated 
• Separation between threshold curves corresponding to parametric  excitation of 

successive modes is smaller in comparison with phase diagrams of free bubbles
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• Subharmonic 
excitation of 
shape modes 
beyond a 
certain amplitude 
threshold 

Dynamic overpressure above threshold for static buckling

• Explosive excitation 
of shape modes 
beyond a different 
threshold amplitude: 

• Dynamic buckling –
equivalent to 
Rayleigh-Taylor 
nstability for free 
bubbles

Tsigklifis & Pelekasis, Physics of Fluids 2011



Static Buckling Instability
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P. Marmottant et al.(2011) 
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νf<<vo=25 MHz

Imposing a forcing frequency

ε=2.0

Contrast agent PB127
polymer/albumin shell

• Static stability and 
dynamic simulations 
provide same 
amplitude 
threshold and 
eigenmode
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Dynamic Stability and Simulations of Polymeric Shells

Dynamic buckling 
based on linear stability

Dynamic buckling 
based on simulations

The behavior of polymeric shells, large area dilatation, conforms with the 
concept of a viscoelastic solid with stretching and bending stiffness

• Lower and upper solid lines -> threshold for 
buckling and transient break-up based on 
experiments (Bouakaz et al. 2005)

• Lower dotted line, crosses and solid circles  -> buckling threshold obtained via static 
stability, finite element analysis and surface evolver 

• Upper dotted line -> static rupture criterion due to stretching at expansion (too high)
• Open circles -> transient break-up based on the revised Marmottant model (requires 

unrealistically large shell thickness
• Solid triangles -> Threshold of dynamic buckling based on linear stability and simulatilons

t
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Parametric Stability
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Stability, ε=5.1

Simulation, ε=5.1

Subharmonic oscillations are more conducive to saturation because there is 
more time available for the stabilizing effect of energy transfer between modes 

Strain hardening membranes undergo only  transient break up either through 
harmonic or subharmonic resonance

Strain Softening membrane

• In both types of resonance 
shape modes grow mostly 
during compression 

• They reach saturation 
upon exchanging energy 
with the radial mode

• As the amplitude is 
further increased towards 
the threshold of dynamic 
buckling transient 
break-up is observed

Saturation - Subharmonic Resonance

t



Parametric Stability- The effect of Residual stresses
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Strain Softening membrane

• Residual stresses 
significantly reduce 
the stability 
threshold in terms of  
sound amplitude

• Shape mode growth 
occurs primarily 
during compression

• The amplitude 
window between 
saturation and 
transient break-up is 
condensed
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The effect of Residual stresses – Change in the Constitutive Law

• Increasing ε to 1.5 results 
in transient break- up of  
the microbubble via 
dynamic buckling

• Employing a change in the 
constitutive law from 
strain softening to strain 
hardening results in a 
compression only type 
behavior with viscous 
stabilization of  
microbubble pulsations

• This phase transition is 
employed when the 
amplitude of  emerging 
shape modes grows 
beyond a certain level 
signifying the appearance 
of  high curvature regions 
where lipid bilayers are 
formed

Simulation for a 
strain softening 
shell when ε=1.8
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Simulation for a shell 
that switches its 
mechanical behavior 
when ε=1.8
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Tsigklifis & Pelekasis, to appear in the Physics of Fluids (2013)



Rbal=1.5 μm, ρl=998 kg/m3, Pst=1 atm, νf=2.4 MHz, ε=12, γ=1.07 , P∞=PSt[1+εcos(2πνft)]

Numerical simulations
o Assuming a free bubble produces the same 

maximum volume expansion without 
observing Rayleigh – Taylor instability

Dynamic Buckling - Comparison with Experiments

Experimental observations by J. 
E.Chomas et al. (2004) with MP1950

Break-up is attributed to Rayleigh –
Taylor instability
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Considering a membrane described by the Mooney-Rivlin constitutive law, the shell 
elasticity can be adjusted so that the maximum volume expansion is recovered

• The microbubble
fragments very fast 
via dynamic 
buckling 

• The time to 
fragmentation is 
controlled by 
bending resistance 
kB  and shell 
viscosity

• Simulations 
recover predictions 
of stability analysis



Static Response

• Need to dissociate static from dynamic effects in order to extract the 
mechanical properties of the shell

• Static measurements will allow phase transitions and folding 
instabilities to manifest themselves

• Alternative means, to acoustic measurements, for obtaining 
parameter estimates 

• Typically the linear regime provides the shell  stiffness  for given shell 
thickness h

• For very thin phospholipid shells h is not known and kb is a more 
appropriate independent parameter 

Finite Element Simulations

• Solution of the normal and tangential force balance along with the  
torque balance for a shell of small but finite thickness – Point or 
distributed loads are considered

• The effect of gas compressibility is also considered

• Effects of cantilever stiffness and curvature are also important



AFM Measurements with Contrast Agents
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         (Glynos, Sboros Koutsos, personal communication)
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AFM measurements of polymer microspheres (bisphere) with tipless cantilevers of 
varying stiffness, kc (Glynos et al. Langmuir, 2009)
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AFM measurements of phospholipid shells (definity and BR14) with tipless cantilevers of 
varying stiffness, kc (Santos et al. Langmuir, 2012)



Axisymmetric Static Deformation
Schematic of an AFM setup for compression of single hollow microsphere with a cantilever

• The balance between stretching and bending energies (a) for the case of a 
flattened shell and (b) when a crater is formed at the pole provides the linear  
(Reissner) and nonlinear (Pogorelov) force-deformation relation

• An estimate of bending and stretching elasticities is pursued based on asymptotic 
analysis of the experimental force displacement curve

• In principle, fitting the experimental data with the above two types of behavior 
may produce both area dilatation and bending resistance of the shell

2
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Data Analysis
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Overall Picture

• At very low forcing attractive adhesive 
forces balance elastic forces

• Linear part is characterized by stretching 
and bending forces

• Ensuing nonlinear part behaves like F~∆0.5

and is chacterized by a narrow rim of 
deformation

• At large deformations abrupt increase of 
forces is needed in order to account for 
added stiffness due to compressibility of 
enclosed gas (for soft shells)

• Phase transitions and instabilities

Adhesion forces

Gas compressibility
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Static Simulations of Microbubble Response to a Point Load

• Coupling of experimental data from the two 
regimes with asymptotic prediction provides 
estimates of χ=3Gsh and kb to be used in 
the simulations

• For BR14 we obtain χ~0.1 Ν/m and 
kb~0.5x10-14 Nm – Using χ and h instead 
would obtain an unrealistic value for h
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         for a phospholipid shell
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Failure to capture initial regime may 
compromise accuracy in certain cases

Cantilever curvature and 
deformability is also a factor
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Conclusions
• Nonlinear shell properties, e.g strain softening vs. strain hardening membrane 

material, significantly affect contrast agent response 

Allowing for bending elasticity shape deformation and buckling are captured 
Bending elasticity is independent from area dilatation modulus due to non-
isotropy of the membrane

Polymeric shells follow a neo-Hookean behavior - Lipid monolayer shells 
exhibit a strain softening behavior (they become softer at expansion as the 
area density of the monolayer decreases) – Lipid bilayer shells exhibit strain 
hardening behavior (they become softer at compression)

• Static buckling occurs when the microbubble suffers a step increase in external 
pressure, or a sinusoidal change of very small frequency compared against its 
resonance frequency, of sufficiently large amplitude

Static simulations of point load response reveal linear and nonlinear regimes that 
can be combined to provide estimates of χ and kb

Shell thickness is not a relevant parameter for thin monolayer shells 
Compressibility effects will improve estimates for shells with stiffness that is 
comparable with stiffness due to gas compressibility, e.g. lipid monolayers

Adhesion forces at small deformations and cantilever deformability are expected 
to also play a role
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• With the available modeling tools a number of dynamic effects exhibited by 
contrast agents is understood and captured, e.g. resonance frequencies, 
abrupt vibration onset, rich harmonic content, expansion and compression only 
behavior, harmonic and subharmonic shape mode excitation

• Mode saturation is captured above the stability threshold (supercritical growth) 
for parametric excitation -- Growth of unstable modes occurs mostly during 
compression -- Part of the energy lost by the radial mode due to deformation 
is returned to it via nonlinear interaction with the emerging mode during 
compression  Preferential radial excursion at compression

• Strain softening shells exhibit this pattern more often and mostly for 
subharmonic ecxitation for which there is more time available for energy 
exchange – As the amplitude increases towards the threshold for dynamic 
buckling transient break-up takes place

• Dynamic buckling (equivalent to Rayleigh-Taylor instability for free bubbles) 
occurs exponentially fast for much larger sound amplitudes 
Strain softening shells tend to exhibit this behavior at lower amplitudes than 
strain hardening ones due to viscous stabilization of the latter



• Develop a constitutive law for bending and stretching energy that is taylor-
made for each contrast agent and accounts for monolayer to bilayer phase 
transitions

• Develop a set of static, e.g. via AFM,  and dynamic measurements for 
contrast agent characterization

• Study Bubble-wall, bubble-cell interaction and the dynamic behavior of 
trapped microbubbles

Current & Future Work

•“Compression only” behavior is probably associated with bending at 
compression and subsequent formation of bilayer structures that introduce 
strain hardening behavior to the shell response  Results in significant radial 
excursion at compression and stabilization, against growth of shape modes 
and transient break-up, due to viscous damping

For an initially pre-stressed shell the amplitude thresholds for parametric 
mode excitation and transient break-up are significantly reduced and the 
window for saturated pulsations shrinks – “Compression only behavior” is a 
natural means to extend the stability and cohesion of the microbubble



Thank you for your attention 

Questions


