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APPLICATIONS

Contrast agents have a wide range of technological applications:

 Targeted drug delivery - encapsulated microbubbles that carry drugs are attached to the affected
site and then ruptured by using an appropriate acoustic disturbance (Ferrera et al., 2007)

 Medical imaging of vital organs – gas-filled microbubbles are used which are able to enhance the
ultrasound backscatter and produce high quality images (Kaufmann et al., 2007)
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OBJECTIVES

 Study the response of encapsulated microbubbles to step change and acoustic
disturbances when the viscous forces of the surrounding liquid are accounted for.

 Determine the effect that the rigid wall has on the behavior of contrast agents.

 Define the mechanism that leads to contrast agent collapse – explore the possibility of jet
formation

 Develop the appropriate numerical methodology for simulating the problem under
investigation.
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Bubble in an unbounded flow Bubble – wall interaction

Continuity equation: 0,u  ( , ,0)ru u u or ( , ,0)r zu u u
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Force balance equation:

: the normal unit vector pointing inward the liquid fluid
: the gas pressure
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where

,s   : the principal tensions
se : the tangential unit vector

q : the transverse shear tension that is obtained from a torque balance on the shell
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,sm mwhere the principal bending moments

The viscoelastic behavior of the membrane is described by the Mooney-Rivlin constitutive law

Adiabatic change of bubble pressure:
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 Numerical solution is done with the Finite Element Methodology. A superparametric hybrid scheme is
employed that combines lagrangian (biquadratic and bilinear) basis functions for the simulation of
velocity and pressure in conjunction with 1D cubic splines for the simulation of the interface .
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 The kinematic equation is used as essential boundary condition for the velocity, whereas the force

balance equation is used for the calculation of the bubble shape ( due to the presence of a 4th order
partial derivative in the force balance equation).
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 Time integration is done with a fully implicit Euler scheme.

 The non-linearity of the problem is treated with the Newton-Raphson method.

 The linearised system of equations is solved iteratively with the GMRES method.

NUMERICAL METHODOLOGY
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Bubble in an unbounded flow

Bubble – wall interaction

The complex physical domain is converted to a simple rectangular
computational domain via appropriate variable transformations

8th GRACM, VOLOS, 12-15 JULY 2015

1. SPINE METHOD
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VARIABLE TRANSFORMATION:
(Dimakopoulos & Tsamopoulos, 2003a)
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 S is introduced in order for the n-curves to be almost perpendicular to the interface.
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 ε1 is an empirical parameter between 0 and 1 that controls the smoothness of the mapping relative to
the degree of orthogonality of the mesh lines.

 The penalty method is used wherever we need to control the node distribution
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In the presence of a wall the penalty method is applied on the n-curves that starts from the bubble ‘s
poles. (Chatzidai et al., 2009)

(Christodoulou & Scriven,1992 ;Tsiveriotis & Brown, 1992; Notz & Basaran,2004  )
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Elliptic mesh generation for contrast agents

 For the mesh construction we use a hybrid scheme that combines the lagrangian basis functions with
the 1D cubic splines. So, the nodes on the interface are described via spline basis functions and all the
others nodes with lagrangian functions (due to the presence of a 4th order partial derivative in the force
balance equation)

 In every time step:
a) we solve simultaneously the flow equations and the shape of the interface. This procedure is the

same as in the case of the spine method.
b) The shape of the interface is used as essential boundary condition to solve the elliptic equations for

the grid

 The penalty method is not applied on the interface, but only on the n-curves which start from the
bubble poles (in the case of wall presence).

 In all boundaries (except the interface) we impose orthogonality conditions without including the line
integrals resulting from the divergence theorem.
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 When the bubble gets close to the wall n-grid lines (lines parallel to the wall) tend to pull away
from the wall – The grid construction must be done by dividing the area in two separate sub-

domains.
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Grid construction in two separate domains
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RESULTS FOR STEP CHANGE DISTURBANCES
 For step change disturbances, according to static analysis, contrast agents may reach a static non-

spherical state.

 We are interested in examining the dynamic response of coated microbubbles and investigate the
possibility for a static solution to be achieved.

 It is also important to study the response of contrast agents to greater disturbances and determine
whether a jet is formed (as it happens in the case of free bubbles).

 It is, also, important to study how the wall presence alters the behavior of contrast agents.

(Κnoche & Kierfeld, 2011)
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(Lytra & Pelekasis, 2014)
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310 ,Pa s  

'
0 3.6 ,R µm 20 ,s Pa s  

3998 / ,kg m  0.051 / ,N m  1.07 

80 Ρa,sG  1 ,thickness nm 143 10bk N m  

 The bubble performs few volume pulsations and reaches a compressed spherical shape – For
amplitudes ε >1.65 static buckling is observed( εcr=1.55)

 Finally, for ε=1.65-3, a new non-spherical static solution is reached that has smaller energy than the
intermediate spherical one.

 If the viscosity of the surrounding liquid is reduced the same static solution is obtained.
 If we ignore the viscosity of the liquid or the surface tension or if we don ‘ t permit the movement of

the bubble, the non – spherical state is not observed. Shape modes grow continuously and the bubble
eventually collapses.

External disturbance:  ' ' 1 , 1.65 3stP P      
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RESULTS FOR STEP CHANGE DISTURBANCES IN AN UNBOUNDED FLOW
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• Distance between the lower pole and the wall:

Spine method Elliptic method
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 Spine method fails to describe the bubble behavior all the way, whereas the elliptic mesh generation
technique allow us to capture the deformation of the bubble at all stages.

 The bubble reaches again a static state of similar shape but much more compressed compared to the
results in an unbounded flow.

 The wall presence accelerates the appearance of shape modes and alters slightly the final static shape
The movement of the bubble towards the wall is very small due to the viscosity of the liquid.
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• External disturbance:  ' ' 1 , 2stP P     
1 3z 
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 If we reduce the distance between the bubble and the wall and/or the liquid viscosity we observe
the same static state.
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• Distance between the lower pole and the wall:

Viscosity of the surrounding liquid



Imposition of greater disturbance:  ' ' 1 , 3stP P     
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 For greater disturbances, static shapes are observed too – The poles of the bubble coalesce and a
very compressed shape is formed compared to the results we obtain in the absence of the wall

 The upper pole is moving very fast inwards, then slows down and at the same time the lower pole
starts moving upwards until the two poles coalesce

0.5 1 1.5 2

3

3.5

4

4.5

5
Final Mesh r-z

8th GRACM, VOLOS, 12-15 JULY 2015



RESULTS FOR ACCOUSTIC DISTURBANCES
 For acoustic disturbances, the behavior of contrasts agents when there is no wall present is described

by phase diagrams
Region 1: Amplitudes smaller than

εcr for static buckling

(Tsiglifis & Pelekasis, 2011)

Volume
pulsations

Region 2: Amplitudes greater than εcr for
static buckling and smaller than
εcr for dynamic buckling

Shape
oscillation in
harmonic or
subharmonic

resonance

Region 3: Amplitudes greater than εcr
for dynamic buckling

Bubble
collapse

 We are interested in exploring dynamically if this behavior of contrast agents is influenced by the
viscosity of the liquid and the wall presence.

 Furthermore, it is important to determine the mechanism of bubble collapse when the wall is present

 Finally, it is important to study the behavior of contrast agents near the wall where microstreaming is
possible (Marmottant & Hilgenfeldt, 2003)
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RESULTS FOR ACOUSTIC DISTURBANCES IN AN UNBOUNDED FLOW

External disturbance:  ' ' ' '1 cos , 3.4st fP P t f MHz 
    

(Tsiglifis & Pelekasis, 2013)
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 For amplitude ε=5.1, we observe only volume and not shape oscillations when the viscosity of the
liquid is accounted for.

 For amplitude ε=7, steady shape oscillations (Ρ4 dominates and Ρ6 , Ρ8 follow) in subharmonic
resonance (frequency of volume pulsations twice the frequency of Ρ4 )

 Maximum mode amplitude when the bubble radius is minimum
 The viscosity alters the critical amplitude for dynamic buckling
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 ' ' ' '1 cos , 1.7 , 3st fP P t f MHz  
     

 The bubble oscillates with the frequency of the external disturbance and is moving towards the
wall during compression.

 The shape during compression is elongated along the axis of symmetry. When the bubble reaches
close to the wall, the liquid starts to resist the bubble movement and the shape eventually
become straight and wide in the lower pole.

 There is a local pressure increase, lubrication pressure, in the region near the lower pole.
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RESULTS FOR ACCOUSTIC DISTURBANCES FOR BUBBLE-WALL INTERACTION

1 3z 
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• Distance between the lower pole and the wall:
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 If we reduce the viscosity of the liquid the bubble oscillations are more intense
 The bubble behave differently when it gets closer to the wall: the shape doesn’t become wide and

straight on the lower pole, but the upper pole starts moving inwards
 The bubble seems to collapse due to the viscous stresses of the membrane
 The microstreaming effect is captured

410w Pa s  
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2. Liquid viscosity
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CONCLUSIONS

 We have developed a numerical methodology to simulate the dynamic behavior of contrast
agents in a viscous flow by using a superparametric hybrid scheme that combines 2D lagrangian
functions for the simulation of the liquid with 1D cubic splines to capture the shape of the
membrane

 For the grid construction we have used and compared two methods : spine method and the
elliptic mesh generation technique. The spine method fails to capture the large deformations of
the bubble, especially in the presence of the wall. On the other hand, the elliptic method is able
to follow the behavior of the bubble throughout all stages.

 For step change disturbances a steady non-spherical state is possible. If we ignore liquid viscosity
or surface tension or if we don’t permit the movement of the bubble the contrast agent
collapses.

 The static arrangement is also observed in the presence of a rigid wall. The wall accelerates the
appearance of shape modes and alters the final shape as it is much more compressed

 No jet formation was captured for the amplitudes of the step change disturbances we have used.
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 For acoustic disturbances the bubble oscillates with the frequency of the external disturbance and
moves towards the wall during compression. The viscosity of the surrounding liquid alters the
critical amplitude for dynamic buckling.

 For the case of water, when the bubble reaches very close to the wall the liquid starts to resist its
movement, the shape becomes straight and wide in the lower pole as a result of the development
of lubrication pressure in that region.

 For viscosities smaller than water, a different behavior is captured. The shape doesn’t become
wide and straight on the lower pole, but the upper pole starts moving inwards and eventually the
bubble seems to collapse due to the viscous stresses of the membrane.

 The microstreaming effect was captured which has important implications in mass transfer of
surface material or material placed inside the microbubble, towards nearby surfaces
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