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Motivation
• Investigate the weakly nonlinear radial oscillations of a gas bubble encapsulated in an elastic shell. 

The bubble is immersed in an infinite, slightly compressible Newtonian fluid and is subject to a sinusoidal acoustic excitation in the far field.
• The viscoelastic properties of the shell are described by the appropriate constitutive law:

➢Kelvin-Voight for an almost linear material ➢Mooney-Rivlin for a strain softening material ➢Skalak for a strain hardening material

Schematic representation of the microrbubble

• In an attempt to reconcile discrepancies between available simulations[1] and asymptotic analysis[2],[3]:
➢ A different approach to the scaling of the nonlinear terms is employed
➢ Steady-state solutions corresponding to the fundamental resonance of the bubble are sought, valid to second order of approximation 

in terms of the sound amplitude
➢ The asymptotic scheme is validated against previous numerical studies[1].

Results

Calculations have been conducted for water as the ambient liquid at 20oC with parameters:  𝜌𝑙 = 998 ൗ𝑘𝑔
𝑚3 , 𝜇𝑙 = 0.001 Τ𝑘𝑔

𝑚𝑠 𝑐𝑙 = 1500 Τ𝑚 𝑠 , 𝜎 = 0.072 ൗ𝑘𝑔
𝑠2 , 𝛿 ≈ 15𝑛𝑚, 𝑅0 = 3𝜇𝑚, 𝐺𝑠 = 35𝑀𝑃𝑎, 𝜇𝑠 = 0.6
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• Kelvin – Voight membrane 

➢ Linear stress strain behavior valid for small 

displacements.

➢ Mild effect of the shell resistance on the response 

amplitude.

➢ Resonance frequency shift towards lower values. 

➢ Possible resonance in lower forcing frequencies with 
proper adjustment of the disturbance amplitude.

• Mooney – Rivlin membrane 

➢ Strain-softening nonlinear material.

➢ Enhanced amplitude response due to the progressive

softening of the shell.

➢ Resonant responses shift to lower frequencies.

➢ Possible resonance in lower forcing frequencies with 
proper adjustment of the disturbance amplitude.

• Skalak membrane 

➢ Strain-hardening nonlinear material.

➢ Diminished amplitude response due to the progressive

hardening of the shell.

➢ Resonant responses shift to higher frequencies.

➢ Possible resonance in higher forcing frequencies with 
proper adjustment of the disturbance amplitude.

Figures: Frequency response curves for increasing amplitude of the external acoustic excitation: (a)analytical results (b)numerical results (c)numerical tables

Conclusions
General remarks

• Resonant response depends on the constitutive law used to describe the membrane’s material.
• Each case leads to resonance in two ways:
➢ For a given ultrasound amplitude, the driving frequency is adjusted to the proper value to achieve resonance. 
➢ For a given ultrasound frequency the amplitude is adjusted accordingly so that the driving frequency matches the shifted resonant frequency.

• In the limit of asymptotically small deformations all cases reduce to an almost linearized behavior as expected.[1],[4] 

On the asymptotic analysis
• The nature of the shell affecting the magnitude of the response, as well as the shift of the non-linear resonant frequency is captured by the asymptotic analysis.
• For lower values of the sound amplitude:
➢ Analytical and numerical solutions yield comparable results regarding the amplitude of the oscillation and the value of the resonant frequency.

• For higher values of the sound amplitude:
➢ The two methods start to diverge and the asymptotic analysis slightly overestimates values regarding the amplitude and places the resonant frequency in a smaller interval around the eigenfrequency

of the medium.
➢ Graphs produced by the asymptotic method fail to portray the steeper slopes which characterize the non-linear oscillations.

• The validity of the employed method lies on small non-linear terms. When the excitation increases beyond a certain point the scaling of the non-linear terms is not accurate and the method breaks down
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Further Research 
Future research in the framework of PhD studies will cover the case of a coated microbubble attached to a wall due to
intermolecular forces:
• Asymptotic analysis of the static configuration and derivation of a boundary condition on the edge of the free region

incorporating the effects of the contact region and excluding it from calculations. Stability analysis and calculation of the
resonance frequencies.

• Investigation of the dynamic response to an external acoustic disturbance utilizing a boundary element method on the
simplified problem as stated above. Comparison against studies incorporating the contact region and the intermolecular
forces acting upon it.

• Finite element method implementation on the ambient liquid in the vicinity of the bubble in conjunction with lubrication
theory for the thin water film underneath the contact region, in order to capture microstreaming effects.

Mathematical formulation and asymptotic analysis
• Keller – Miksis model describing the nonlinear oscillation of the bubble interface[1]
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• Liquid pressure on the interface for each constitutive  law [1]
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• Keller – Miksis model with parameter ordering for the near main resonance case
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• Power series expansion 𝑅𝐷 𝜀, 𝛵 = 𝑅𝐷0 𝑇 + 𝜀𝑅𝐷1 𝛵 + 𝜀2𝑅𝐷2 𝑇 +⋯ • Periodicity condition 𝑅𝐷𝑖 𝑇 + 2𝜋 = 𝑅𝐷𝑖 𝛵 , 𝑖 = 0,1,2, …

• Amplitude of the radius deviation
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Coefficients Ai Bi calculated  by applying the 
periodicity constraint and negating unbounded 

terms arising from the resonance condition

• Acoustic disturbance

• Adiabatic expansion

• Young – Laplace 
pressure coupling 


