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The details of nonlinear oscillations and collapse of elongated bubbles, subject to large internal
overpressure, are studied by a boundary integral method. Weak viscous effects on the liquid side are
accounted for by integrating the equations of motion across the boundary layer that is formed
adjacent to the interface. For relatively large bubbles with initial radius R0 on the order of
millimeters, PSt= PSt� / �2� /R0��300 and Oh=� / ��R0��1/2�200, and an almost spherical initial
shape, S�1, Rayleigh-Taylor instability prevails and the bubble breaks up as a result of growth of
higher modes and the development of regions of very small radius of curvature; �, �, �, and PSt�
denote the surface tension, density, viscosity, and dimensional static pressure in the host liquid while
S is the ratio between the length of the minor semiaxis of the bubble, taken as an axisymmetric
ellipsoid, and its equivalent radius R0. For finite initial elongations, 0.5�S�1, the bubble collapses
either via two jets that counterpropagate along the axis of symmetry and eventually coalesce at the
equatorial plane, or in the form of a sink flow approaching the center of the bubble along the
equatorial plane. This pattern persists for the above range of initial elongations examined and large
internal overpressure amplitudes, �B�1, irrespective of Oh. It is largely due to the phase in the
growth of the second Legendre mode during the after-bounce of the oscillating bubble, during which
it acquires large enough positive accelerations for collapse to take place. For smaller bubbles with
initial radius on the order of micrometers, PSt�4 and Oh�20, and small initial elongations,
0.75�S�1, viscosity counteracts P2 growth and subsequent jet motion, thus giving rise to a critical
value of Oh−1 below which the bubble eventually returns to its equilibrium spherical shape, whereas
above it collapse via jet impact or sink flow is obtained. For moderate elongations, 0.5�S�0.75,
and large overpressures, �B�0.2, jet propagation and impact along the axis of symmetry prevails
irrespective of Oh. For very large elongations, S�0.5, and above a certain threshold value of Oh the
counterpropagating jets pinch the contracting bubble sidewalls in an off-centered fashion. © 2007
American Institute of Physics. �DOI: 10.1063/1.2749421�

I. INTRODUCTION

The fashion by which a bubble collapses has been inves-
tigated extensively since Rayleigh’s1 first study on the
spherosymmetric collapse of cavitation bubbles in the con-
text of propeller damage. Asymmetric bubble collapse was
addressed later on2,3 in order to assess the destructive effect
of jet formation during collapse near a solid boundary. This
was facilitated by resorting to the boundary integral formu-
lation that requires discretization of the bubble-liquid inter-
face and the rigid or free boundaries that interact with the
bubble, rather than the entire flow domain. This is of course
possible in the potential flow regime that is applicable to the
case of collapsing bubbles. The destructive effects of the
shock wave that is generated by the spherical implosion of a
collapsing bubble and of the jet that is formed during asym-
metric collapse have been captured and verified
experimentally4,5 with high-speed photography, and they are
both known to contribute to plastic deformation of nearby
material. Recent advances in computational and cinemato-

graphic observation techniques have afforded capturing the
details of collapse and in particular the formation of
toroidal6,7 bubbles at jet impact in the presence of a solid
boundary.

The details of bubble collapse have recently been singled
out as a key factor in the context of single bubble
sonoluminescence8 �SBSL� and single cavitation bubble
luminescence9 �SCBL� experiments, where light is emitted
during the final stages of collapse of a bubble that is gener-
ated and held captive via acoustic bubble traps or strong
laser pulses, respectively. The initial shape of bubbles in-
duced via laser pulses is easier controlled, hence bubbles
generated in this fashion are often used as a means to exam-
ine the effect of sphericity during collapse on the level of
light emission. Thus, it was seen9 by comparing the collapse
of a free bubble against that of a bubble in the vicinity of a
solid boundary, via a high speed image converted camera,
that in the former arrangement light emission is stronger ow-
ing to the higher sphericity of collapse. The pulse duration in
these experiments was in the order of a few nanoseconds and
the bubbles that were generated had sizes on the order of
1 mm while being more or less spherical. More recently,
employment of femtosecond, 10−15 s, laser pulses was
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possible,10 in which case the bubbles that are generated are
much smaller in size, on the order of a few micrometers,
with more pronounced asymmetries in their initial geometry,
i.e., they exhibited an initial elongation along their axis of
symmetry. Such bubbles were observed to collapse asym-
metrically in a water solution without any light emission,
whereas bubbles produced by the nanosecond laser pulses
collapsed in a more or less spherosymmetric fashion10 and
this process was accompanied by strong light emission. A
complete simulation of laser-induced bubbles is not possible
by examining the equations of motion only, as the phenom-
enon of SCBL is strongly affected by heat and mass transfer
especially when one focuses on the dynamics very close to
bubble inception and collapse. Few studies in this direction
exist in the literature,11,12 and clearly more fundamental re-
search is warranted in the way of providing accurate predic-
tions of the temperature field during the final stages of
bubble collapse. The present study was motivated by the
above experiments and is intended to provide a parametric
investigation on the details of bubble collapse for different
bubble sizes under conditions of weak or strong elongation
and large overpressure, and at shedding some light on the
effect of initial degree of sphericity on the mechanics of jet
formation and impact during bubble collapse.

In a different context, spark-ignited bubbles13,14 are stud-
ied numerically and experimentally in order to provide in-
sight into the mechanism of noise generation in tip vortex
flow in the presence of cavitation. In numerical simulations
of spark-ignited bubbles that are allowed to deform in be-
tween two vertical plates, elongation and initial overpressure
also coexist. The pressure signals during bubble splitting and
subsequent jet impact are evaluated and correlated with mea-
sured noise. It is of interest to capture the pressure signal
during the final stages of collapse of bubbles that are initially
elongated and pressurized, in the manner described in the
next section, and compare the results with those obtained in
the above two references.

The boundary element technique is known to be able to
provide the details of bubble collapse in various flow
arrangements.2,3,6,13–18 More recently, the idea of integrating
the equations of motion across the boundary layer19 for drop
oscillations with surface tension dominating viscous dissipa-
tion �low Ohnesorge number regime, Oh=� / ��R��1/2�, and
obtaining an equation for the evolution of the scalar and
vector velocity potentials that is valid on the interface, was
applied for the case of an elongated bubble.20 This is particu-
larly useful for bubbles of relatively smaller size, such as
those produced by femtosecond laser pulses, where viscosity
provides the dominant dissipation mechanism. In the latter
study,20 henceforth referred to as I for brevity, it was seen
that, for small internal overpressures, jet formation and im-
pact is present when an elongated bubble collapses in the
form of two counterpropagating jets that collide at the equa-
torial plane forming a tiny microbubble that is surrounded by
a larger toroidal one. This collapse mechanism arises below a
certain threshold value of Oh, above which the bubble even-
tually returns to its equilibrium spherical shape. The appear-
ance of toroidal bubbles is indeed a recurring theme in stud-
ies of collapsing bubbles,6,15,17,18,20 but it will be seen here

how internal overpressure affects this process since this
quantity is a good measure of the initial mechanical energy
of bubbles that are generated via laser pulses9,10 or spark
ignition.13,14

In Sec. II, a brief account is given of the specific features
of the problem treated in the present study, i.e., initial con-
ditions and parameter range, as well as a brief account of the
governing equations and of the numerical methodology. In
Sec. III, a parametric study is carried out of the process of
bubble collapse in the appropriate parameter range deter-
mined by initial elongation, internal bubble overpressure,
bubble size, and viscosity. Different modes of collapse are
obtained and the existence of universalities during pinch-off
is investigated. Finally, in Sec. IV, conclusions are drawn
based on the results of the present study, which are also
compared with the findings of similar studies available in the
literature, and directions for future research are outlined.

II. PROBLEM FORMULATION AND SOLUTION
METHODOLOGY

A. Governing equations

The problem addressed in the present study is similar to
that in I except for the initial conditions, where specific at-
tention is placed on the level of initial overpressure inside
the elongated bubble,

PG�t = 0� = PG�t = 0−��1 + �B� , �1a�

PG�t = 0−� − PSt = 1; �1b�

�B denotes the amplitude of the internal overpressure and
PSt= PSt� / �2� /R0� denotes the dimensionless static pressure,
but it can also serve as a measure of the bubble size; PSt�
denotes the dimensional static pressure. In the above equa-
tions as well as in the rest of this study, the dimensionless
formulation used in I is adopted, with surface tension and
inertia setting the dominant balance that provides the char-
acteristic time, velocity, and pressure scales; when dimen-
sional variables are introduced they will be denoted by
primes. The investigated regime of large internal overpres-
sures is characterized by �B�1 or larger. The bubble is as-
sumed to be an ellipsoid initially. The level of elongation is
again characterized by parameter S=a /R0 with a and R0 de-
noting the length of the smaller semiaxis and the radius of a
bubble with the same initial volume, V0, as the elongated
bubble, respectively, Fig. 1,

V0 =
4

3
�R0

3 =
4

3
�a2c − R0 = �3V0

4�
�1/3

,
c

R0
=

1

�a/R�2 =
1

S2 .

�2�

c is the length of the larger semiaxis of the ellipsoid repre-
senting the initial shape of the elongated bubble, which as-
sumes the following dimensionless form in spherical
coordinates:
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r = f�	,t = 0� =
S

�S6 cos2 	 + sin2 	
. �3�

As the negative deviation between S and unity increases, S
�1, then the initial elongation of the bubble is intensified.
Based on the bubble sizes generated by nanosecond and fem-
tosecond laser pulses in water, the cases with R=420 and
5.8 �m are considered, corresponding to a dimensionless
static pressure PSt=295 and 4.1, respectively. For bubbles of
this size in water, Oh−1= ��R0��1/2 /� is 174 and 20, respec-
tively; �, �, and � denote surface tension, density, and vis-
cosity in the host liquid. However, for completeness, the
parametric study is contacted in S, �B, and Oh, with the
understanding that the analysis is strictly valid when Oh−1


1, i.e., when viscous forces are less important than surface
tension. In this fashion, the problem formulation reads as
follows. Lagrangian particles are employed for updating the
location of the interface,

dr

dt
=

�un + Un�r	s + utrs

�rs
2 + r2	s

2
, �4a�

d	

dt
=

utr	s − �un + Un�rs

r�rs
2 + r2	s

2
, �4b�

where r, 	, denote the radial and polar spherical coordinates,
subscript s denotes partial differentiation with respect to the
arc-length s of the generating curve of the axisymmetric in-
terface, t and n are the tangential and normal components of

the potential, u� =�� �, and vortical, U� =�� �A� , part of the fluid

velocity and d /dt=� /�t+ �u� +Unn�� ·�� ; � ,A� , denote the scalar
and vector potentials associated with the fluid velocity. Com-
bining the Bernoulli equation with the normal force balance
on the interface, we obtain an equation describing the time
evolution of scalar potential on the interface,

d�

dt
=

u2

2
+ unUn + 2P
 − 2PG + 2A�t� · �� u� · n��

− 2H − 2Oh�n� · �� u� · n�� �5�

that also contains O �Oh� corrections for the normal viscous
stress and the vortical part of the pressure on the interface.
The normal component, un=�� /�n, of the potential velocity
field is obtained by recasting the Laplacian in the form of an
integral equation evaluated on the interface

��r̂, 	̂,t� + 	
0

1

���r,	,t� − ��r̂, 	̂,t��

�
�G

�n
�r̂, 	̂,r,	�r sin 	�r�

2 + r2	�
2�1/2d�

= 	
0

1 ��

�n
�r,	,t�G�r̂, 	̂,r,	�r sin 	�r�

2 + r2	�
2�1/2d� ,

�6�

where G and �G /�n denote the axisymmetric free-space sin-

gular kernels of the Laplacian. Owing to axisymmetry, A�

=A�r ,	�e��, and integrating the tangential component of the
momentum equation across the boundary layer, we obtain an
equation describing the time evolution of the vector velocity
potential evaluated on the interface,

DA

Dt
= A�n� · �� u� · n� − t� · �� u� · t�� − Oh

�Ut

�n
. �7�

Equations �4�–�7�, along with the appropriate boundary con-
ditions enforcing axisymmetry at the two poles, provide the
description of the bubble dynamics based solely on interfa-
cial variables, including weak viscous effects. For more de-
tails on the formulation, the interested reader is referred to
Refs. 19 and 20.

As a means to analyze and cross-check the numerical
results, the equation describing shape instabilities12 for an
oscillating bubble is employed,

än + 
3
Ṙ

R
+ 2

Oh

R2 �n + 2��2n + 1��ȧn

+ �n − 1�
−
R̈

R
+

�n + 1��n + 2�
R2 + 2

OhṘ

R3 �n + 2��an,

�8�

where n denotes the Legendre mode under investigation and
R�t� is the time variation of the dimensionless bubble radius
as predicted by the Rayleigh-Plesset �RP� equation for an
initial disturbance of the form shown in Eq. �1�,

RR̈ +
3

2
Ṙ2 = 2�PSt + 1��1 + �B�R−� − 2PSt − 4Oh

Ṙ

R
− 2.

�9�

The liquid is treated as incompressible and the gas inside the
bubble as ideal with a polytropic constant �. The above ap-
proximation is appropriate since the duration of the investi-
gated phenomena is very short and consequently the bound-

FIG. 1. Schematic diagram of an elongated bubble with initial overpressure.

072106-3 Nonlinear oscillations and collapse Phys. Fluids 19, 072106 �2007�

Downloaded 20 Sep 2007 to 130.89.94.219. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



ary layer thickness can be approximated as �����t�.
Equation �8� is valid provided ���R0 or equivalently, t
�Oh−1, which is indeed the case in the context of the present
study.

B. Numerical methodology

The numerical methodology employed for capturing the
detailed bubble dynamics is explained in detail in I. The
kinematic and dynamic boundary conditions, Eqs. �4� and
�5�, along with the equation describing the evolution of the
vector potential, Eq. �7�, are discretized via the finite-element
method and are integrated in time with the fourth-order ac-
curate Runge-Kutta method. Filtering is applied on the vec-
tor potential solution at every time step in order to eliminate
short wave instabilities. The normal component of the poten-
tial velocity vector is calculated by applying the boundary
element method on the integral Eq. �6�. In order to accom-
modate the large initial elongations and overpressures of the
bubble as well as the resulting large deformations and jet
velocities, use of symmetry is employed, when bubble geom-
etry permits, along with parallel construction of the system
matrix that arises as part of the boundary integral methodol-
ogy. In fact, between 100 and 200 elements are used along
half of the generating curve of the interface, 0�	�� /2, for
moderate initial elongations, S�0.7, whereas between 300
and 600 elements are used, in the same portion of the 	
space, when the initial elongation becomes very large, S
�0.6. Finally, marker points are redistributed at every time
step in order to properly resolve areas of high curvature.
Subsequently, in order to avoid unstable evolution of marker
points, the time step is adapted following the �t��smin

5/2 rule
for cases with explosive and almost spherosymmetric bubble
collapse. The latter scaling arises in the context of the
Rayleigh-Plesset equation when the velocity of a spherical

bubble during collapse is evaluated,21 Ṙ�R−3/2, which as R
becomes vanishing small gives �t��R5/2. The latter scaling
reflects the dominant balance between inertia and the pres-
sure drop between the far field and the bubble interior. When
the initial elongation is relatively large and the bubble col-
lapse asymmetric, the �t��smin

3/2 time adaptation rule is em-
ployed as suggested by the universality law governing most
of the collapse phase of such bubbles, already discussed in I
and observed in the present study also.

III. PARAMETRIC STUDY

In I, the dynamic behavior of elongated bubbles was
examined with vanishing or small initial overpressure, and
the combined effect of initial elongation and viscous dissipa-
tion was investigated. It was thus seen that for small elonga-
tions, the bubble will eventually return to its equilibrium
spherical shape, whereas above a certain level of elongation,
S, smaller than, roughly, 0.6 for zero initial overpressure, a
threshold value of Oh−1 exists above which the bubble even-
tually collapses via jet impact giving rise to a toroidal bubble
surrounding a tiny microbubble that occupies the central re-
gion of the original bubble. The existence of a small initial
overpressure does not significantly change this picture, sta-
bilizing the bubble by increasing the critical Oh−1 number for

jet impact. Overpressure essentially delays the process of jet
formation by uniformly expanding the bubble, thus giving
more time for viscosity to act and prevent impact. Large
internal overpressures are expected to enrich the above dy-
namic pattern by adding large amounts of energy to the sys-
tem that may then be converted to inertia with interesting
consequences on the bubble dynamics. In this section, the
effect of large internal overpressure on the dynamics of
micrometer- and millimeter-sized bubbles is investigated as a
function of �B, S, and Oh. These are very small bubbles and
we expect viscous damping to be the dominant dissipation
mechanism. In order to assist the analysis of the bubble be-
havior, the formulas providing the resonance frequencies for
volume and shape oscillations, as predicted by linear theory
excluding any damping mechanism, are reproduced below,

�0 = �6�PSt + 1�� − 2�1/2�k = ��k2 − 1��k + 2��1/2, k � 1.

�10�

A. Micrometer-sized bubbles, PStÈ4, Oh−1È20

We first consider bubbles with initial volume character-
ized by an indicative equivalent radius of 5.8 �m, generated
in water at normal conditions, 20 °C and 1 bar, in which
case PSt�4.1. For bubbles of this size oscillating in water,
Oh−1�20. Nevertheless, a parametric study was conducted
by varying Oh, in order to capture the effect of viscous dis-
sipation on the breakup mechanism. We consider initial over-
pressure levels that are characterized by values of �B on the
order of 1 or larger. In particular, the case with �B=2 was
examined for a wide range of initial elongations and viscous
dissipation levels. For small initial elongations, S�0.7, typi-
cally between 100 and 200 elements were used in the half
theta space and the dimensionless time step varied within
one calculation between 5�10−4 and 10−5. For large initial
elongations, S�0.45, typically 350 elements were used in
the half theta space and the dimensionless time step varied
within one calculation between 10−5 and 5�10−6.

When the initial elongation is negligible, S�1, the
bubble performs a number of volume oscillations during
which it gradually becomes more and more deformed due to
the onset of higher nonspherical harmonics. Eventually, it
settles to its equilibrium spherical shape under the action of
viscous dissipation, Fig. 2. Plotting the shape mode decom-
position as a function of time indicates gradual decay, and
this is corroborated by stability analysis, via Eqs. �8� and �9�,
of the second spherical harmonic, i.e., the second Legendre
polynomial �P2� in the context of axisymmetric disturbances;
see also Figs. 2�b� and 2�c�. When the effect of viscous dis-
sipation is mitigated, larger Oh−1, while the rest of the prob-
lem parameters remain the same, the time required for re-
turning to the spherosymmetric configuration is longer, until
a threshold value of Oh−1 is reached above which the bubble
pinches off via jet formation and impact in the manner de-
scribed in I for small overpressures; see Figs. 3�a� and 3�b�
for the case with Oh−1=40. The mode decomposition is also
depicted as obtained from the numerically calculated bubble
shape as well as the stability analysis, Figs. 3�c� and 3�d�. In
both figures, P2 exhibits gradual growth during the collapse
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phase of volume pulsations indicating the onset of an after-
bounce instability.12 The latter is similar to the Rayleigh-
Taylor instability since it is also associated with positive gas
accelerations during bubble collapse, however it is not as
explosive, and the parametric instability since it also exhibits

gradual growth, however it does not require as many cycles
to appear. It should also be stressed that, based on Eq. �10�,
�0�6.4, which is almost twice the resonance frequency of
P2, �2�3.4, indicating the possibility for parametric
excitation.

When the initial overpressure increases, �B=10, the
threshold in Oh−1 for jet impact decreases also, due to faster
growth of P2, until it covers almost the entire range of Oh
number. The rest of the even Legendre modes are either
stable or grow but not as fast as P2, which dominates the
dynamics. It is important to note that when the internal over-
pressure is small or absent,20 jet formation and impact are
heavily dependent on the inertia imparted to the bubble poles
due to the initial elongation. As �B increases significantly, in
contrast to the situation with small initial overpressure ��B

�1� in which case collapse via jet impact is stabilized, this
process is assisted by P2 growth as a result of the after-
bounce instability that allows for jet impact even at very low
initial elongations, S=0.99, provided viscous damping is not
strong enough to eventually overwhelm shape instability.
The fashion by which jet impact takes place depends on the
phase in the P2 growth pattern for which its amplitude is
large enough for impact to take place. When the amplitude of

FIG. 2. Time evolution of �a� bubble shapes, �b� numerically obtained shape
mode decomposition, and �c� evolution of bubble radius and shape mode
decomposition based on stability analysis; S=0.99, PSt=4.1, �B=2, Oh−1

=20, with 100 elements in the region 0�	�� /2.

FIG. 3. Time evolution of �a� bubble shapes in the beginning of the motion,
�b� bubble shapes during collapse, �c� numerically obtained shape mode
decomposition, and �d� evolution of bubble radius and shape mode decom-
position based on stability analysis; S=0.99, PSt=4.1, �B=2, Oh−1=40, with
150 elements in the region 0�	�� /2.
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P2 grows in time, it does so in the manner shown in Fig. 3,
gaining in size during each collapse phase of the pulsating
bubble while exhibiting alternating sign with increasing
number of pulsation cycles. Thus, when collapse occurs dur-
ing the positive phase in the P2 growth cycle, it manifests
itself in the form of a sink flow along the equatorial plane

that is directed toward the center of the bubble on the axis
symmetry. Figure 4 illustrates this behavior when Oh−1

=200. When the opposite happens, negative P2 amplitudes,
the jets propagate along the axis of symmetry and coalesce
on the equator. The latter is the type of behavior that we
obtain in I as well as in most cases presented in this study for

FIG. 4. Time evolution of �a� bubble shapes during collapse, �b� numerically
obtained shape mode decomposition, and �c� evolution of bubble radius and
shape mode decomposition based on stability analysis; S=0.99, PSt=4.1,
�B=2, Oh−1=200, with 150 elements in the region 0�	�� /2.

FIG. 5. Time evolution of the shape of the bubble �a� in the beginning of the
motion, �b� during jet formation, and �c� during collapse; S=0.7, PSt=4.1,
�B=2, Oh−1=20, with 200 elements in the region 0�	�� /2.
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relatively large elongations, in which case the initial content
of P2 in the bubble shape is quite substantial, prolate, so that
when the shape of the bubble becomes oblate, negative P2

content, for the first time the propagating jets are fast enough
to cause impact. The former type of collapse leads to a dif-
ferent final topology that consists of two larger bubbles and a
tiny one occupying the center of the original bubble, i.e., it is
not associated with the formation of a toroidal bubble. A
collapse mode of this type was also obtained in the context
of bubble interaction with a tip vortex or plane
boundaries.13,14 In the latter two studies, the original bubble
is seen to collapse on the axis of symmetry before it splits to
form two smaller bubbles, which then collapse on their own.
The simulations indicate a strong pressure signal in the host
liquid in the vicinity of the bubble during the primary col-
lapse followed by a stronger signal during the collapse of the
smaller bubbles. The first signal was thought to be an artifact
of the numerical process of splitting the bubble. However, its
presence is corroborated by the simulations presented here,
showing locally a peak pressure accompanying dimple for-
mation during collapse.

As the initial elongation increases, the centered collapse
mode via jet impact persists until it occupies the entire range
of Oh, 0.5�S�0.75, when �B�2. Within this range of elon-
gations, the bubble always collapses with the two jets coa-
lescing at the equatorial plain irrespective of Oh; see Fig. 5
for S=0.7 and Oh−1=20, with the understanding that as Oh
increases, the onset of collapse is decelerated. The shape
mode decomposition, Fig. 6, confirms the above described
pattern of P2 growth. The evolution of the dimensionless
speed of the two bubble tips for the case shown in Fig. 5 is
illustrated in Fig. 7 as an indicator of jet velocity. In it as
well as in subsequent graphs, negative values of interfacial
speed denote inward motion. Initially the bubble tips coin-
cide with the poles. However, during the collapse phase the
velocity of the dimple that is formed is shown, hence the
slight jump in the curve toward the last stages of jet coales-
cence. When dimensional quantities are used, jet speeds on
the order of 15 m/s are captured, indicating the level of se-
verity during impact. It should be noted that larger jet speeds

are developed as Oh−1 increases, which, nonetheless, remain
of the same order of magnitude. The universal law relating
the time from collapse with the 3/2 power of the minimum
distance between the two coalescing jets, reported in I but
also in previous studies of capillary drop pinch-off22 and
attributed to the inertia versus capillarity balance, is seen to
hold in the case of large overpressures also, Fig. 8, especially
as Oh−1 tends to infinity. It should be noted that, based on the
above scaling, during the collapse phase the dimple velocity
grows like �t0− t�−1/3, where t0 denotes the time instant at
which the approaching dimples meet at the equatorial plane,
irrespective of Oh as long as Oh−1 remains large. Hence the
steep rise in the absolute value of the calculated velocities
exhibited toward the very last moments of the collapse
phase. The same pattern is recovered in the case of collapse
via sink flow along the equatorial plane.

When S becomes smaller than a threshold value, SCr

�0.45 when �B�2, an additional breakup mechanism arises
that evolves in an off-centered fashion. This is illustrated in
Figs. 9 and 10, showing the breakup process of an elongated
bubble with Oh−1 set to 20 and 1000, respectively. In the

FIG. 6. Time evolution of the numerically obtained shape mode decompo-
sition when Oh−1=20, S=0.7, PSt=4.1, �B=2.

FIG. 7. Time evolution of the dimensional normal velocity of the bubble tip
when Oh−1=20 S=0.7, PSt=4.1, �B=2.

FIG. 8. Time evolution of the distance D, raised to the 3/2 power, between
the dimples that are formed on counterpropagating jets when Oh−1=20; �B

=2 and S=0.7.
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former case, the centered breakup mechanism reported in I
and recovered here for smaller elongations, i.e., the one lead-
ing to a microbubble and a toroidal bubble, is reproduced.
On the other hand, as Oh−1 increases, the velocity of the two
jets is so large that they penetrate well into the bubble inte-
rior before the contraction phase is over. In this process, the

portion of the bubble sidewalls that lies closer to the tip that
is formed at each one of the two poles approaches the axis of
symmetry with a considerable speed. Thus, the bubble side-
walls are close enough to interact with the penetrating jet,

FIG. 9. Time evolution of the shape of the bubble �a� in the beginning of the
motion, �b� during jet formation, and �c� during collapse; S=0.45, PSt=4.1,
�B=2, Oh−1=20, with 350 elements in the region 0�	�� /2.

FIG. 10. Time evolution of the shape of the bubble �a� in the beginning of
the motion, �b� during jet formation, and �c� during collapse; S=0.45, PSt

=4.1, �B=2, Oh−1=1000, with 350 elements in the region 0�	�� /2.
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eventually leading to an off-centered pinching mechanism.
Consequently, instead of proceeding along the axis of sym-
metry, each one of the two jets pinches at the bubble sidewall
giving rise to two smaller toroidal bubbles located in the
vicinity of each one of the poles of the original bubble, and a
larger bubble occupying the central region of the original
bubble.

This is a result of the fact that both P0 and P2 are present
to a large extent in the bubble dynamics for this parameter
range, with P2 more or less following P0; see also Fig. 11,
illustrating the time evolution of the shape mode decompo-
sition for the above two cases. Thus, as P0 completes one
cycle of its pulsation contracting to its minimum size, P2

completes half of its own oscillation switching from the ini-
tial prolate shape to an oblate one. As a result of synchroni-
zation, the two jets penetrating the bubble from each one of
the two poles meet the contracting bubble sidewalls. Conse-
quently, each jet faces an increasing bubble pressure and its
front becomes more rounded in order to adjust to changes in
the pressure difference across the interface. For bubbles of
this size, surface tension can accommodate this process and
in this fashion the jet front interacts closely with the bubble
side walls producing the off-centered collapse mode. When
Oh−1 decreases, the jets are delayed in penetrating the
bubble. Consequently, there is not enough time for them to
interact with the bubble walls, hence the centered collapse
mode. Similarly as S decreases further, i.e., the bubble is
more elongated initially, the jet is faster and the threshold
value OhCr

−1 for the centered mode to occur decreases. To the
extent that the two modes are not significantly detuned, this
pattern persists. In fact, increasing �B increases the period of
P0, albeit not significantly, and does not affect OhCr

−1, which
remains as predicted when �B=2, OhCr�200.

Monitoring the minimum distance between the jet tip
and the bubble sidewall, we can reproduce the universality
law mentioned above relating the time from pinch-off with
the 3/2 power of the minimum distance, Fig. 12. This result
was, to a certain extent, expected since here also the collaps-
ing process involves an inertia versus capillarity balance that
is characterized by the above power law. Another interesting
aspect of the collapse process is the evolution of the jet speed
from inception until collapse and it is depicted in Fig. 13

when Oh−1=20 and 1000. This is a useful quantity if one
wants to establish the importance of jet formation in various
phenomena such as cavitation damage or even light emission
during collapse. As discussed in the Introduction, in both
phenomena it is believed that shock wave and jet formation
play a role the extent of which, however, in different flow
arrangements is not always clear and simulations such as the

FIG. 11. Time evolution of the numerically obtained shape mode decompo-
sition when S=0.45, PSt=4.1, �B=2, and Oh−1=20 and 1000. FIG. 12. Time evolution of the distance D, raised to the 3/2 power, between

the dimples that are formed on counterpropagating jets when Oh−1=1000;
�B=2 and S=0.45.

FIG. 13. Time evolution of the dimensionless �a� normal velocity of the
bubble tip when Oh−1=20 and 1000 and �b� relative normal velocity of the
pinching parts of the bubble’s interface when Oh−1=1000; S=0.45, PSt

=4.1, �B=2.
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ones presented here can help, along with properly designed
experimental investigations, in addressing this issue. The
asymptotic increase of jet speed during impact that was dis-
cussed in the context of Fig. 7 is also illustrated here in the
small inset of Fig. 13�a�. Upon comparing the two figures for
the case with Oh−1=20, it is concluded that, despite the much

larger initial elongation in Fig. 13�a�, the jet speed is not
significantly increased during collapse. In Fig. 13�b�, the
relative velocity of the two pinching parts of the interface is
shown. It exhibits an oscillatory behavior, without the steep
increase in absolute value during the collapse phase. This is
due to the fact that the normal velocities of the pinching parts
of the interface are not aligned with the line connecting

FIG. 14. �a� Bubble shape during collapse, and time evolution of �b� nu-
merically obtained shape mode decomposition and �c� evolution of bubble
radius and shape mode decomposition based on stability analysis; S=1,
PSt=295, �B=10, Oh−1=174, with 300 elements in the region 0�	�� /2.

FIG. 15. �a� Bubble shape during collapse, and time evolution of �b� nu-
merically obtained shape mode decomposition and �c� evolution of bubble
radius and shape mode decomposition based on stability analysis; S=1,
PSt=295, �B=2, Oh−1=174, with 200 elements in the region 0�	�� /2.
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them, as was more or less the case with the centered collapse
mode. Nevertheless, the universality law still holds during
collapse, Fig. 12, since this is also determined by the balance
between inertia and capillarity. In order to compare jet speed
from the above calculations and those presented in the fol-
lowing sections, the speed of the pole at the instant of dimple
formation is used as an indicative jet speed. From this point
on, the universality law takes over leading to increasingly
large dimple velocities until collapse.

Simulations with the bubble oscillations treated as iso-
thermal were also carried out. In this case, part of the energy
of the system is consumed in order to maintain the bubble at
a constant temperature and this has the same effect as a small
reduction of Oh−1, favoring the centered collapse mode. In
other words, the rest of the problem parameters remaining
fixed, the critical Oh−1 value for the collapse process to
switch from the centered to the off-centered mode increases,
with respect to the threshold value for adiabatic oscillations.

The rest of the details of collapse do not change significantly
when isothermal conditions are assumed, except for the time
to collapse which is longer.

B. Millimeter-sized bubbles, PStÈ300, Oh−1È180

The collapse mode of bubbles of larger size was also
examined, with a characteristic radius R=420 �m, for large
initial overpressures and over a range of elongations. Owing
to the large size of such bubbles, PSt=295 and Oh−1=174 for
air bubbles oscillating in water at atmospheric pressure, and
consequently viscous dissipation does not play as important
a role in the system dynamics as was the case with the
micrometer-sized bubbles examined in Sec. III A. In fact,
simulations with Oh−1 ranging from 20 to infinity were car-
ried out and no significant effect on the collapse mode was
observed. This is a result of the larger size of the bubble and
the resulting domination of inertia effects over dissipation.

FIG. 16. Time evolution of �a� bubble shapes in the beginning of the motion, �b� bubble shapes during collapse, �c� numerically obtained shape mode
decomposition, and �d� dimensionless pressure distribution on the liquid side along the bubble interface at the time instant of impact; S=0.99, PSt=295,
�B=10, Oh−1=174, with 200 elements in the region 0�	�� /2.

072106-11 Nonlinear oscillations and collapse Phys. Fluids 19, 072106 �2007�

Downloaded 20 Sep 2007 to 130.89.94.219. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



For small initial elongations, S�0.99, typically 200 ele-
ments were used in the half theta space and the dimension-
less time step varied within one calculation between 10−4 and
5�10−7 in order to accommodate the explosive collapse
phase of the bubble during which �t��smin

5/2 . For moderate
initial elongations, S�0.7, larger time steps were used rang-
ing from 10−5 to 2�10−6. For large initial elongations, S
�0.45, the number of elements varied during one calculation
from 350 to 600 in the half theta space, in order to properly
capture the penetrating jets, while the dimensionless time
step varied between 10−5 and 10−6.

If a perfectly spherical shape is assumed, S=1, while

maintaining a large initial overpressure, �B�1, the bubble
performs volume oscillations until it eventually breaks up as
a result of an explosive Rayleigh-Taylor instability that is
expected to destroy its integrity creating fragments of
smaller bubbles. Figures 14 and 15 illustrate this behavior in
the final bubble shape before collapse and in the time history
of the shape mode decomposition as obtained numerically
and predicted by linear stability analysis assuming an initial
disturbance on the order of the computational accuracy,
an�t=0�=10−6. As can be gleaned from the final shapes and
the shape mode decompositions shown in Figs. 14 and 15,
higher modes grow very fast leading to a violent bubble
collapse via neck formation characterized by local areas of
very low curvature. In fact, when �B=2P12 grows the fastest,
it leads to the formation of 12 satellite bubbles that are ex-
pected to eventually fragment the bubble. It is also interest-
ing to note that P2 is stable when �B=2.

For very large initial overpressure, �B�10, and finite
initial elongation, S�1, growth of P2 is observed in the form
of an after-bounce instability that arises during the rebound
of the bubble from its minimum volume. The microbubble
collapses in a centered fashion, either via a sink flow along
the equatorial plane toward the center of the bubble, Fig. 16
for S=0.99, or via two jets that propagate in the opposite
direction along the axis of symmetry and coalesce at the
equatorial plane, Fig. 17 for S=0.9. One of the two patterns
prevails depending on the phase of P2 growth during col-
lapse, in the manner described in Sec. III A and verified by
the shape mode decomposition shown in Figs. 16�c� and
17�c�. When �B=10, the latter type of collapse, involving jet
propagation along the symmetry axis, is recovered for a wide
range of initial elongations, 0.5�S�0.9. As the initial over-
pressure increases further, �B�10, the same differentiation
in the type of collapse is observed, depending on the initial
elongation, with the range in S corresponding to sink flow
along the equator increasing. In both cases, pinching ob-
serves the 3/2 power law during the breakup process.

Experiments13,14 with spark-ignited bubbles, size on the
order of 450 �m, and subject to internal overpressure, indi-
cate collapse on the axis of symmetry and bubble fission.

FIG. 17. Time evolution of �a� bubble shapes in the beginning of the mo-
tion, �b� bubble shapes during collapse, and �c� numerically obtained shape
mode decomposition; S=0.9, PSt=295, �B=10, Oh−1=174, with 200 ele-
ments in the region 0�	�� /2.

FIG. 18. Time evolution of the dimensionless normal velocity of the bubble
tip with increasing initial elongation, S=0.99, 0.9, and 0.7; PSt=295, �B

=10, and Oh−1=174.
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Simulations were also carried out with the boundary integral
method14 covering a wide parameter range. For bubble sizes
on the order of 450 �m, simulations reported in the above
study recover the experimentally observed collapse pattern.
In addition, they indicate a large pressure signal in the host
fluid, at the time that the bubble splits and in the vicinity of
the pinching area, which was conjectured to be a numerical
artifact. Numerical simulations performed in the context of
the present study also reveal that the pressure in the host
fluid exhibits a strong peak in the vicinity of the region
where impact takes place. Figure 16�b� shows the shape of
the bubble during collapse, illustrating the region where the
sink flow converges, i.e., around the equator. It is near this
region that the liquid pressure peaks, Fig. 16�d�, and is ex-
pected to emit a strong pressure signal. The latter follows the
details of the bubble shape. There is uncertainty regarding
the accuracy of the actual numbers, since compressibility is
expected to decelerate liquid motion toward the very last
stages of collapse, but the strong pressure signal is definitely
there. The same was true for small overpressures, as was
shown in Fig. 11�e� of I, but to a lesser extent. Consequently,
the intense pressure signal reported at the moment of bubble
fission in Ref. 14 is verified.

A large number of simulations were also conducted with
varying Oh number without any effect on the collapse mode.
Figure 18 compares dimensionless tip velocities for three
different elongations. When S=0.9 and 0.7, each tip is lo-
cated at the poles of the axis of symmetry, whereas when S
=0.99 the tip is located at the equator. Jet speeds at collapse
tend to increase with decreasing initial elongation while they
are higher that those calculated for micrometer-sized
bubbles, Figs. 7 and 13, indicating the larger effect of final
impact for bubbles of this size. In all the above cases, the
speed of the approaching tip at the instant of dimple forma-
tion was used as an indicative jet speed in the comparison.
We use the term jet speed for the case of sink flow as well in
order to indicate the localized nature of both types of col-
lapse. When the bubble is almost spherical, S�0.95, and the
initial overpressure not very large, �B=2, the bubble col-
lapses after a number of periods of oscillations, in a fashion
similar to the situation illustrated in Fig. 15 leading to frag-
mentation. This is a result of the stability of P2 for this pa-

rameter range and the growth of higher modes that generate
areas of very low radius of curvature where rupture is more
likely to happen. For larger elongations, 0.5�S�0.95, P2

exhibits growth and the centered collapse mode, involving
jet propagation along the axis of symmetry, is recovered for
the entire range of S and �B values examined. It should be
stressed that for S values below 0.45, the off-centered col-
lapse mode prevails, due to the large jet speed that enhances
interaction with the sidewalls during the contraction phase.
As was explained in the preceding subsection, this leads to
rounding of the jet front and pinching at the sidewalls.

IV. CONCLUSIONS

An extensive parametric study was carried out numeri-
cally, regarding the collapse mode of small bubbles, initial
radius on the order of 6 �m corresponding to PSt�4 and
Oh−1�20, and large bubbles, initial radius on the order of
400 �m corresponding to PSt�300 and Oh−1�180, in water
under atmospheric pressure, subject to large internal over-
pressures with characteristic amplitude �B, and a wide range
of initial elongations S. For small bubbles it is seen that for
small elongations, S�1, and large overpressures, �B�1, a
threshold value exists in Oh−1 above which the bubble col-
lapses via jet formation or sink flow as a result of P2 growth
due to an after-bounce instability, whereas below this thresh-
old it eventually settles to its equilibrium state. Increasing �B

destabilizes the bubble by decreasing the threshold in Oh−1

for P2 growth. For moderate initial elongations, e.g., 0.5
�S�0.75 when �B=2, and the entire range of initial over-
pressures that was investigated, 2��B�10, the collapse
mode via jet propagation and impact along the axis of sym-
metry prevails irrespective of Oh, with the upper limit of the
S interval increasing as �B increases. This is a combined
effect of the initial P2 level and unstable growth. As S is
further reduced, S�0.5, an off-centered collapse mechanism
arises that involves interaction between the penetrating jets
and the contracting bubble sidewalls. The centered collapse
mode along the axis of symmetry probably takes place in
experiments with asymmetrically collapsing femtosecond la-
ser bubbles,10 whose size is on the order of a few �m, oper-
ating in the very large initial elongation and initial overpres-

TABLE I. Collapse pattern for micrometer-sized bubbles depending on the parameter range.

Bubbles with initial radius R0�5 �m in water at 1 atm; PSt�4, Oh�20

Initial elongation S Type of collapse

Small elongations,
S�1, e.g., 0.75�S�1

when �B=2

Oh−1�OhCr
−1 collapse via jet impact along the axis of symmetry or

sink flow along the equator due to P2 growth during the bubble
after-bounce, Oh−1�OhCr

−1 damping of oscillations
as S decreases or �B increases OhCr

−1 decreases

Moderate
elongations, e.g.,

0.5�S�0.75 when
�B=2

Collapse via jet impact along the axis of symmetry irrespective of Oh,
as �B increases the upper limit of the S interval increases

Large elongations,
S�0.5

Oh−1�OhCr
−1, collapse via jet impact along the axis of symmetry,

Oh−1�OhCr
−1 off-centered collapse mode,

as S decreases OhCr
−1 decreases,

�B does not affect OhCr
−1�2��B�10�
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sure parameter range. It should be noted that the available
experimental observations could not resolve jet formation
and impact due to the angle of observation.

When the parametric study focuses on large bubbles,
PSt�300 and Oh−1�200, the effect of Oh, i.e., viscous dis-
sipation, is minimal. For large internal overpressures, �B

�1, and very small elongations, S�1, the bubble breaks up
as a result of Rayleigh-Taylor instability. Shape mode de-
composition obtained numerically, and corroborated by sta-
bility analysis, captures the growth of high axisymmetric
modes that leads to satellite bubble formation and breakup in
regions of very small radius of curvature. In the presence of
small but finite initial elongation, S�1, impact is observed
due to growth of P2 in the form of an after-bounce instability,
as also verified by stability analysis. Jet propagation occurs
along the axis of symmetry or sink flow takes place along the
equator, depending on the phase in P2 growth. In fact, for
very large initial overpressures and very small elongations,
�B�10 and S�0.95, propagation along the equator prevails.
The latter may take longer to be initiated, due to the small
initial P2 content, but leads to a more explosive impact as a
result of the increased sphericity of the bubble. For not very
small elongations, S�0.9, jet propagation occurs along the
axis of symmetry irrespective of �B. In fact, this type of
behavior persists for quite large elongations, i.e., S values as
small as 0.5, below which the off-centered mode prevails.
Collapse via sink flow is probably responsible for the col-
lapse pattern observed in experiments of nanosecond laser
bubbles,10 size on the order of half a millimeter, where the
available recordings indicate a similar mode of impact. The
above collapse patterns as obtained via the parametric study
are schematically shown in Tables I and II.

In the literature,13,14 bubble pinching in the presence of
elongation and overpressure has also been obtained in a dif-
ferent context, when spark-ignited bubbles are allowed to
deform between two vertical plates. The two bubble frag-
ments are followed after fission occurs, until reentrant jet
formation and impact takes place in the tips corresponding to
the north and south poles of the original bubble. The present
study also captures sink flow along the equator and pinching
on the axis of symmetry while verifying the appearance of a
strong pressure signal during this process. The post pinching
behavior of the bubble is not captured here. An interesting
issue arises regarding the post pinching bubble behavior

since experiments with collapsing laser bubbles, which are
also elongated and pressurized,9,10 do not indicate fission af-
ter collapse. This is an issue that warrants further examina-
tion because accurate prediction of the collapsing process of
laser-induced bubbles requires careful accounting of liquid
evaporation11 and compressibility effects during the final
stages of collapse.
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