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The nonlinear radial oscillations of bubbles that are encapsulated in an elastic shell are investigated
numerically subject to three different constitutive laws describing the viscoelastic properties of the
shell: the Mooney–Rivlin �MR�, the Skalak �SK�, and the Kelvin–Voigt �KV� models are used in
order to describe strain-softening, strain-hardening and small displacement �Hookean� behavior of
the shell material, respectively. Due to the isotropic nature of the acoustic disturbances, the area
dilatation modulus is the important parameter. When the membrane is strain softening �MR� the
resonance frequency decreases with increasing sound amplitude, whereas the opposite happens
when the membrane is strain hardening �SK�. As the amplitude of the acoustic disturbance increases
the total scattering cross section of a microbubble with a SK membrane tends to decrease, whereas
that of a KV or a MR membrane tends to increase. The importance of strain-softening behavior in
the abrupt onset of volume pulsations, that is often observed with small insonated microbubbles at
moderately large sound amplitudes, is discussed. © 2008 Acoustical Society of America.
�DOI: 10.1121/1.2909553�
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I. INTRODUCTION

The common approach of most studies modeling con-
trast agents is a direct transfer of the achievements of clas-
sical physical acoustics to biological systems. In the pioneer-
ing studies of microbubble pulsations in blood flow, contrast
agents are commonly described by various forms of the
Rayleigh–Plesset equation �Church, 1995; Frinking and De
Jong, 1998�. In one of the earlier attempts to model a con-
trast agent, Church used a generalized Rayleigh–Plesset
model that accounted for the shell thickness and viscoelastic
properties. In this manner he was able to show the effect of
shell properties on the resonance frequency and sound at-
tenuation in a liquid containing microbubbles. To this end, he
used the Kelvin–Voigt constitutive law, which is essentially
Hooke’s law for an incompressible material and predicts the
stresses developing on the shell membrane for small dis-
placements. It is valid in the limit of small amplitude acous-
tic disturbances. Adopting a slightly different approach,
Frinking and de Jong modeled the microbubble shell as a
membrane of infinitesimal thickness and used simple linear
models or semiempirical laws, respectively, for the descrip-
tion of shell elasticity and viscosity. They contacted simula-
tions in the linear and nonlinear regime of acoustic distur-
bances and thus were able to point out the importance of
higher harmonics in the scattered signal, as well as the effect
of viscoelastic properties of the shell on the bubble response.
However, upon comparing the predictions of their model
with the available scattering data obtained at higher acoustic
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pressures, they reported failure to predict the dependence of
scattering cross section on increasing acoustic pressure.
Sboros et al. �2002� reached a similar conclusion when they
compared the same models against their own measurements.

An effort towards a more rigorous theoretical descrip-
tion of radial pulsations of microbubbles in blood flow was
made by Khismatullin and Nadim �2002�. In that study the
radial motion of a microbubble that is encapsulated by a
viscoelastic membrane and surrounded by a slightly com-
pressible viscoelastic liquid was examined, assuming that the
viscoelastic properties of the shell and the liquid are de-
scribed by the Kelvin–Voigt �KV� and the 4-constant Old-
royd models, respectively. In this fashion they were able to
calculate resonance frequencies and damping coefficients for
linearly pulsating microbubbles. As was already shown else-
where �Church, 1995; Hoff et al., 2000� because of mem-
brane elasticity resonance occurs at higher frequencies than
for the case free bubbles. However, their theory is restricted
to small-amplitude oscillations only, hence the effect of the
appearance of higher harmonics and subharmonics was re-
stricted to the second harmonic response. The Church–Hoff
model �Hoff et al., 2000�, is an adaptation of the Church
model �Church, 1995�, taken in the limit of small shell thick-
ness in comparison with the radius. As an alternative ap-
proach, Sarkar et al. �2005� modeled the effect of shell dila-
tational elasticity through interfacial tension and its variation
with shell interfacial area, while also including the effect of
dilatational shell viscosity through a Newtonian viscoelastic
model for the membrane material.

As will be seen in the following, this is a recurring issue
with most models of contrast agents, namely their predictive

value at large acoustic pressures is limited. In particular, it
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should be stressed that all the above models ignore changes
in the material with varying sound amplitude, adopting a
type of Hooke’s law for the material’s mechanical behavior.
However, most materials exhibit a varying apparent elasticity
modulus when they are subject to external disturbances of
increasing intensity or increasing frequency. In the follow-
ing, apparent elasticity modulus denotes the varying slope of
the stress-strain relation of a particular material. Thus, there
are materials, called strain hardening, whose stress-strain re-
lationship exhibits a larger slope as deformations increase.
This essentially amounts to an increased apparent elasticity
modulus. A characteristic example of this type of material is
that of the lipid bilayer that forms the red blood cell mem-
brane as well as of certain polymers that are used in the
manufacturing of contrast agents. On the other hand, if the
stress-strain slope is reduced as deformations increase, the
material is called strain softening, e.g., rubber. Such behavior
is accounted for by the constitutive law describing the mem-
brane material. The Skalak law �Skalak et al., 1973� belongs
to the class of constitutive laws describing materials that are
strain hardening by nature and it is widely used for describ-
ing the mechanical behavior of the red blood cell membrane,
while the Mooney–Rivlin law is a often used to characterize
strain softening materials. The importance of these material
properties has already been recognized in the modeling of
blood cells or capsules in general �Barthès-Biesel et al.,
2002� where by the term capsule we refer to drops sur-
rounded by an elastic membrane.

The scope of this paper is to emphasize the flow struc-
ture interaction aspect of contrast agent dynamics by cross
examining the effect of membrane viscoelastic behavior
along with that of external liquid attributes such as viscosity,
compressibility, and nonlinearity in the acoustic disturbance.
A detailed account of the model employed for the description
of the microbubble is given in Sec. II, based on the model of
Keller and Miksis �1980�. The encapsulating shell is mod-
eled as a thin membrane via one of the three membrane
constitutive laws that were mentioned above, i.e., the
Kelvin–Voigt, Mooney–Rivlin, and Skalak laws. The fluid
and structure problems are coupled at the microbubble inter-
face where the stress balance is imposed. The numerical
methodology is briefly presented in Sec. III. As a final prod-
uct the resonance frequency and scattering cross section of
the microbubble are calculated for a wide parameter range in
Sec. IV. The impact of the constitutive law on the interpre-
tation of certain experimental observations is also stressed.

II. PROBLEM FORMULATION

We consider an encapsulated microbubble with initial
radius R0, submerged in a Newtonian liquid of density �l,
dynamic viscosity �l and static pressure Pst� taken to be at 1
bar. The microbubble consists of ideal gas encapsulated in a
viscoelastic membrane. The latter is taken to be volume in-
compressible with shear modulus Gs and viscosity �s. The
shell thickness � is taken to be much smaller than the initial
radius. Initially the membrane is at static equilibrium where
it may develop uniform residual stresses, assuming a

spherosymmetric configuration:
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RE = R0 − �u��r�=R0�
, �1�

where u��r�=R0�
, is the radial displacement that produces the

residual stresses and RE the microbubble equilibrium radius
that is free of any stresses. For stress free initial conditions
RE=R0; throughout this study primed letters denote dimen-
sional variables. The gas inside the microbubble exerts at the
membrane a pressure Pg,0� the variations of which are applied
instantaneously and uniformly throughout the gas due to its
negligible density. We also assume that the microbubble ex-
ecutes adiabatic oscillations. Consequently, each moment the
pressure inside the bubble is correlated with the microbubble
volume as

Pg�V�� = Pg,0� V0�
�, �2�

with V0� denoting the initial microbubble volume and �=1.4
the polytropic constant for an adiabatic process.

The bubble is insonated by a sinusoidal pressure distur-
bance in the far field

P�� �t� = Pst� + PAc� �t�� = Pst� �1 + � sin�� ft��� , �3�

with v f =1−10 MHz �� f =2�v f� the forcing frequency lying
in the ultrasound range, PAc� �t�� the far field pressure distur-
bance, and � the amplitude of the acoustic disturbance. The
n-harmonic component of the scattering cross section is
given �Hilgenfeldt et al., 1998� by

	� = 4�

�
0

tf�
r�2PSc�

2dt�

�
0

tf�
PAc� 2dt�

, �4a�

	Sc,n� = 4�

�
0

tf�
r�2PSc,n� 2dt�

�
0

tf�
PAc� 2dt�

, �4b�

PSc� �r�,t�� = Pl��r�,t�� − Pst� − PAc� �t��; �4c�

PSc� is the scattered pressure from the microbubble, registered
in the host fluid at a distance r� from the microbubble’s
center of mass, while subscript n denotes the n-harmonic
component of the scattering cross section. In the present
study 	Sc� is evaluated at the interface, in which case r�=R� is
the instantaneous external microbubble radius.

The initial external radius of the microbubble, R0, is
assigned as the characteristic length of the problem. Since
the time scale of microbubble oscillations is determined by
the external forcing frequency, � f, the characteristic time of
the problem is 1 / �� f� and subsequently the characteristic
velocity, � fR0. Finally, the characteristic pressure is defined
via the characteristic velocity as �l� f

2R0
2.

A. Governing equations of the external liquid

The pulsating motion of the microbubble may exhibit
very large velocities, especially as the amplitude of the

acoustic disturbance increases as is the case when high me-
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chanical index ultrasonic bursts are employed. As a result of
its low viscosity, viscous effects may be neglected in the
bulk of the host fluid, taken to be either water or blood, and
a velocity potential, 
�, may be introduced which simplifies
the analysis significantly. In addition, inclusion of liquid
compressibility is required in the model in order to account
for fluid motion in the far field. When the Mach number of
the flow is small but not negligible, M =� fR0 / �c��1, based

on the radial velocity of the microbubble interface, Ṙ�
�� fR0, the far field flow is compressible and is described by
the wave equation. Near the bubble-host fluid interface the
flow field can be described by the Laplacian to leading order
�Prosperetti and Lezzi, 1986�. In this fashion, and utilizing
the known wave form for the pressure disturbance that is
applied in the far field, the nonlinear ordinary differential
equation describing spherosymmetric oscillations of a mi-
crobubble in a compressible liquid reads

�1 − MṘ�RR̈ + �3

2
−

MṘ

2
	Ṙ2 = �1 + MṘ���Pl�r=R − Pst

− PAc� + MR
d

dt
��Pl�r=R − PAc� , �5�

where R is the dimensionless external microbubble radius at

time t, Ṙ=dR�t� / �dt�, R̈=d2R�t� / �dt2� and Pl�r=R is the di-
mensionless pressure of the host liquid calculated at the mi-
crobubble’s interface. Equation �5� provides the instanta-
neous location of the bubble’s interface once the liquid
pressure is known. It is essentially the Keller–Miksis model
�1980� describing moderate, fast, or even very fast radial
oscillations of a bubble by properly accounting for com-
pressibility effects when M is small but not negligible. The
normal component of the viscous stress exerted on the mi-
crobubble reads in spherical coordinates as

�n · Xl� · n�r�=R� = �l�2
�ur�

�r�
−

2

3
�� · u�	 , �6�

where the second term on the right hand side arises as a
result of compressibility even though it is not very important
for small M; see Prosperetti and Lezzi �1986� for more de-
tails on the asymptotic validity of the Keller–Miksis model
for small Mach numbers.

B. Modeling of the mechanical behavior of the
membrane constitutive laws

The liquid pressure exerted on the membrane can be
calculated via a stress balance that is applied on the mem-
brane itself. In this fashion the microbubble model can be
completed by correlating the pressure of the external liquid,
Pl�r=R, calculated on the interface of the bubble, with the
instantaneous pressure inside the bubble, Pg, the viscous
stresses in the liquid, and the viscoelastic stresses that de-
velop on the membrane due to its radial deformation and
velocity. Subsequent substitution in Eq. �5� provides a non-
linear ordinary differential equation that can be solved for

the radial position and velocity of the interface.
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When the shell thickness is infinitesimally small, a
single force balance can be written for the gas–liquid inter-
face,

�PG� I − Pl�I + Xl�� · n = 	��s� · n� · n − �s� · XM� , �7�

where I denotes the unitary stress tensor, n the normal vector
at the interface pointing towards the host fluid, �s� the sur-
face gradient operator, 	 the interfacial tension between the
gas in the microbubble and the host liquid in the presence of
the membrane, Pl� ,Xl� the pressure and viscous stress tensor,
respectively, in the liquid, and XM� the two-dimensional stress
tensor containing the stresses that develop on the membrane
surface as a result of its mechanical properties such as elas-
ticity and viscosity, Pozrikidis, 1992; lower and upper case
symbols in bold denote vectorial and tensorial quantities, re-
spectively, throughout this study. A detailed presentation of
the stresses that develop on the membrane, depending on the
constitutive law that describes the mechanical behavior of
the material that forms the membrane, is provided in the
following.

C. Kelvin–Voigt model

One of the earlier used constitutive laws �Church, 1995�
governing the mechanical behavior of the membrane is the
Kelvin–Voigt law �KV� that relates the viscoelastic stresses

to the strain and rate of strain tensors, ��, �̇�, in a linear
fashion,

XM� = 2�Gs�� + �s�̇��, �� =
1

2
���u� + ���u��T� ,

�̇� =
1

2
���w� + ���w��T� , �8�

where u� and w� are ascribed as the dimensional displace-
ment and velocity vectors inside the membrane, respectively,
Gs, �s signify the shell shear modulus and viscosity ex-
pressed in kg / �m s2� and kg / �m s�, respectively, and super-
script T denotes the transpose of a tensor. We consider radial
pulsations and neglect inertia effects in, and shape oscilla-
tions of, the shell, which is taken to be at equilibrium at all
times. It should also be stressed that the above model is
essentially Hooke’s law, with the addition of a viscous term,
and therefore is strictly valid for small membrane displace-
ments. Nevertheless, different variations of it that are valid
either for finite �Church, 1995; Khismatullin and Nadim,
2002� or infinitesimal �Frinking and De Jong, 1998; Hoff et
al., 2000; Sarkar et al., 2005� shell thickness, are extensively
used in the literature over a very wide range of pressure
amplitudes and viscoelastic parameter values. Consequently,
we also make use of it in the present study, for the purpose of
comparing its validity range against other more relevant con-
stitutive laws that account for changes in the apparent mate-
rial properties, such as the shear modulus, with increasing
pressure amplitude or frequency of sound.

Following Church �1995� and Khismatullin and Nadim
�2002� we consider the r component of the momentum and
continuity equations for the shell, integrate in the radial di-

rection across the shell, and take the stress equilibrium be-
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tween the membrane, the external liquid, and the internal
gas. Thus, we relate the liquid pressure exerted on the mem-
brane, Pl�r=R with the instantaneous pressure inside the
bubble. Owing to the small membrane thickness, in compari-
son with the microbubble radius, we proceed by taking the
ratio between the shell thickness, �, and bubble external ra-
dius, R�, to be negligibly small throughout the bubble pulsa-
tion. In this fashion and neglecting any initial strain, the
liquid pressure Pl�r=R reads in dimensionless form:

�Pl�r=R = 
 2

We
+ Pst�� 1

R
	3�

−
2

WeR
−

4

Rel

Ṙ

R
−

4m

Rel

Ṙ

R2

− 2
3G

R
� R2

�1 − u�2 − 1	 , �9�

where, We=�l� f
2R0

3 / �	� denotes the Weber number compar-
ing inertia forces in the liquid due to the external forcing
with surface tension, Rel=�l� fR0

2 / ��l� and m=3�s� / ��lR0�
the Reynolds number of the external liquid, comparing
forces of inertia with viscous dissipation, and the relative
fluid to membrane viscosity, respectively, and G
=�Gs / ��l� f

2R0
3� the dimensionless shear stress modulus that

compares elastic with inertia forces. The above equation
holds when the membrane remains very thin while undergo-
ing small displacements during the microbubble pulsation,
and is essentially the Church–Hoff model for viscoelastic
membranes �Hoff et al. 2000; Sarkar et al. 2005�. It assumes
an incompressible shell with a simplified expression for the
shell displacements, u��R�2�R�−R0� /r�2.

Upon replacing Eq. �9� in Ref. 5 we obtain an ordinary
nonlinear ordinary differential equation �ODE� with dimen-
sionless time t as the only independent variable, and the ex-
ternal microbubble radius, R, as the only unknown. Coupled
with the appropriate initial conditions, it can be integrated to
provide the radial position and velocity of the membrane,
and through them the rest of the important dependent vari-
ables of the flow. We allow for residual stresses at the onset
of bubble vibration via the initial displacement u0:

R�t = 0� = 1, Ṙ�t = 0� = 0, �u�r=1 = u�r = 1,t = 0� = u0.

�10�

D. Strain hardening and strain softening
materials

Most materials do not respond to external forces through
a constant apparent elasticity modulus. Rather, they exhibit a
varying slope in their stress strain relation at large deforma-
tions or at very abrupt changes of pressure, as is the case
with ultrasound. Two very common families of materials
characterized by this kind of response are strain softening
and strain hardening materials. In the former case the mem-
brane material is such that its shear modulus is reduced as
strain grows, whereas the opposite is true for the latter type
of membrane materials. Most polymer shelled air filled par-
ticles are probably strain softening, e.g., Sonazoid, see also
Sarkar et al. �2005�. Consequently taking into consideration
the specific material behavior will enhance the predictive ca-

pabilities of the model. In the following we present the gov-
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erning equations for the mechanical behavior of a viscoelas-
tic membrane at equilibrium, taken to be infinitesimally thin
in comparison with the radius as is normally the case with
contrast agents used in ultrasound diagnostic imaging, for
different types of nonlinear response.

We associate the elastic tension tensor, XM� , on a de-
formed two-dimensional surface with the Green–Lagrange
surface deformation tensor via the strain energy function
w�I1 , I2�, where I1, I2 denote the 2d strain invariants. The
strain energy w�I1 , I2� depends on the nature of the mem-
brane material and assumes different forms as the mechani-
cal behavior of the membrane changes. A typical strain en-
ergy describing a very thin sheet of an isotropic, volume-
incompressible, rubber-like material with strain-softening
behavior, is the one provided by the two-dimensional
Mooney–Rivlin �MR� law �Barthès-Biesel et al. 2002�,

wMR =
GMR

2

�1 − b��I1 + 2 +

1

I2 + 1
	

�+ b� I1 + 2

I2 + 1
+ I2 + 1	� , �11a�

X�M11
MR =

GMR

�1�2
��1

2 −
1

��1�2�2	�1 + b��2
2 − 1�� , �11b�

with GMR the Mooney–Rivlin surface shear modulus ex-
pressed in kg /s2 and �1, �2 the principal extension ratios.
When the indices are exchanged in Eq. �11b� the stress com-
ponent along principal direction 2 is obtained, whereas for
spherosymmetric pulsations �1=�2. The case with b=0 cor-
responds to a neo-Hookean membrane, whereas as b tends to
zero the membrane becomes softer; b ranges between 0 and
1. It should also be noted that the Mooney–Rivlin constitu-
tive law allows for unrestricted area dilatation that is com-
pensated by progressive thinning of the membrane, whereas
the case with b=0 �neo-Hookean membrane� represents the
appropriate linear stress strain relationship that accounts for
the change in metric properties during deformation.

One of the most widely used constitutive laws pertaining
to strain-hardening membranes is the one developed by
Skalak et al. �1973� in order to model the lipid bilayer struc-
ture surrounding the red blood cell,

wSK =
GSK

2
�I1

2 + 2I1 − 2I2 + CI2
3� , �12a�

X�M11
SK =

GSK

�1�2
�1

2��1
2 − 1� + C��1�2�2���1�2�2 − 1�� ,

�12b�

with GSK denoting the Skalak �SK� surface shear modulus
expressed in kg /s2. Parameter C in the above equations is
always positive and controls the extend of area incompress-
ibility of the membrane. In the case of red blood cells C�1
in order to accommodate the almost incompressible nature of
the membrane area. Nevertheless, this is quite a general law
that is used for strain-hardening membranes.

Membrane viscosity can also be accounted for via a lin-

ear Newtonian term that is added to the elastic stresses and
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involves the membrane velocity, �2d2 / ��i���i / ��t��;
1 / ��1��1 / ��t�� is the first principal component of the surface
rate of strain tensor �Barthès-Biesel et al. �2002�� and �2d the
two-dimensional membrane viscosity expressed in kg/s. In
the absence of material characterization data we take both
shear and dilatational viscosities of the membrane to be �2d.

For a two-dimensional membrane the viscoelastic con-
tributions to the force balance Eq. �7� enter through the sur-
face divergence of the surface stress tensor. In the context of
spherosymmetric oscillations only the radial component of
the divergence has a nonzero contribution, while the mem-
brane principal extension ratio due to its radial displacement
reads

��t�� = �1 = �2 =
R��t��

RE
=

R��t��
�R0 − u��r�=R0�

. �13�

It should be noted that, in view of the isotropy in the defor-
mation that is assumed in the present study, the main elastic
effect that is assessed here is that of area dilatation due to
pulsation. This is reflected in the area dilatation modulus K
that is defined as the ratio between the isotropic elastic ten-
sion and the relative area change ��2−1� for small deforma-
tions. It turns out that a Hookean material with Poisson ratio
�s=1 /2, a MR material and a SK material with C=1 all are
characterized by area dilatation modulus K equal to 3G2d,
where G2d denotes the 2d shear modulus of the membrane. In
the case of a KV membrane G2d=Gs��. In the following we
will use this parameter in order to compare the behavior of
membranes with the same area dilatation modulus that obey
different constitutive laws. Thus, for a MR membrane we
will use GMR=Gs��, and similarly for a SK membrane we
will use GSK=Gs��. In the latter type of membrane it can be
seen that K=GSK�2C+1�. Consequently, in the following we
will ensure that the area dilatation modulus is the same when
we compare strain hardening with strain softening and
Hookean �i.e., KV� membranes. In addition we will present a
separate set of results in order to assess the effect of param-
eter C on SK membranes, whichessentially represents the
effect of increasing the area dilatation modulus for a given
SK membrane.

Upon introduction into the stress equilibrium equation
that holds on the membrane, Eq. �7�, of the MR constitutive
law and reverting to dimensionless formulation in a manner
analogous to the Kelvin–Voigt model, we obtain the follow-
ing expression for the liquid pressure on the membrane:

�Pl�r=R = � 1

R
	3�
Pst +

2

We
+ 2G�1 − �1 − �u�r=1�6�
1

+ b
� 1

1 − �u�r=1
	2

− 1��� +
2

WeR
−

4Ṙ

Rel R

−
2G

R

1 − � �1 − u�r=1

R
	6�
1 + b
� R

�1 − u�r=1
	2

− 1�� −
4Ṙ

RelR
2m , �14�

2 3
where G=GMR / ��l� f R0�, m=�MR / ��lR0�, are the dimen-
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sionless numbers that arise and u�r=1=u0 the initial mem-
brane displacement that determines the residual stresses in-
side the membrane. In a similar fashion, for a SK membrane
the following expression for the dimensionless liquid pres-
sure, Pl�r=R, is derived:

�Pl�r=R = � 1

R
	3�
Pst +

2

We
+ 2G
� 1

1 − u0
	2

�1 − C�

+ C� 1

1 − u0
	6

− 1�� + −
2

WeR
−

4Ṙ

Rel R

−
2G

R

� R

1 − u0
	2

�1 − C� + C� R

1 − u0
	6

− 1�
−

4Ṙ

RelR
2m , �15�

where G=GSK / ��l� f
2R0

3�, m=�SK / ��lR0�, are the dimension-
less numbers that arise. Finally, substituting the above ex-
pressions in Eq. �5� we obtain a nonlinear ODE describing
the time variation of the radial position and velocity of a MR
or a SK membrane with Eq. �10� providing the initial condi-
tions.

E. Linear theory

Starting with the Kelvin–Voigt model we apply infini-
tesimal perturbations to the basic solution, which is the mi-
crobubble equilibrium, assuming that the membrane is free
of residual stresses at t=0, i.e., u0=0. Applying small distur-
bances on the external radius as well as the far field pressure,

R = 1 + �Rd, P�� = Pst + �Pst sin�t�, � � 1, �16�

introducing the above expansions in the governing equations
and retaining terms of order � only, we obtain


1 +
4M

Rel
+

4Mm

Rel
�R̈d + 
−

2M

We
+

4

Rel
+

4m

Rel
+ 3�M� 2

We

+ Pst	 + 12GM�Ṙd + 
3�� 2

We
+ Pst	 −

2

We

+ 12G�Rd = − �Pst sin�t� − �PstM cos�t� . �17�

The above linear equation furnishes the dimensionless reso-
nance frequency, �I=�Res /� f, and damping, s, of the mi-
crobubble via the roots of its characteristic polynomial, �
=s+ i�I. Following the same procedure for the linear dynam-
ics of MR and SK membranes we recover the same � pro-
vided �MR=3���s, GMR=GS��, and �SK=3���s, GSK

=GS��. We conclude that the microbubble behavior is inde-
pendent of the membrane constitutive law if membrane dis-
placements are small. For the SK membrane in addition to
the above conditions it is required that C=1. For any other C
value SK membranes behave differently from MR or KV
membranes even in the linear regime. In all other cases the
microbubble behavior is heavily dependent on the constitu-
tive law and this is an effect that will be demonstrated in the
following sections. In the same manner, the effect of the

initial residual stresses of the membrane on the microbubble
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scattering cross section is an additional issue that must be
investigated in connection with the membrane material law.

For small external perturbations and when the mi-
crobubble has reached the phase of steady oscillations, we
can neglect any transient effects and calculate the scattering
cross section from Eq. �4� by employing the solution of the
linearized problem Eq. �17�

	Sc�

4�R0
2 =

1


�F3

F1
	2

− 1�2

+ �t
2

�1 + M2

F1
2 , �t =

F2

F1
, �18�

where F1, F2, and F3 are the factors multiplying radial ac-
celeration, radial velocity, and radial position, respectively,
in Eq. �17�. In Eq. �18� the scattering cross section is evalu-
ated on the undisturbed microbubble interface.

III. NUMERICAL IMPLEMENTATION

We use the fourth order Runge–Kutta �RK� integrator in
order to solve the second order nonlinear ordinary differen-
tial equation governing the motion of the membrane. The
time step of the numerical integration is fixed and is selected
so that enough time steps are afforded within one period of
the forced or the natural radial pulsations. Eventually results
are tested for convergence with respect to time step and
agreement with linear theory is established, whenever this is
possible. The same approach has been successfully employed
in the past for simulating large amplitude oscillations of free
bubbles �Pelekasis et al. 2004� near the Blake threshold. In
order to compute the integral �0

tf�RPSc�n
2dt in Eq. �4� we

implement Parseval’s identity

�
0

tf

f�t�2dt =
tf

2 �
n=1

�

�an
2 + bn

2� , �19�

where tf is the duration of the time integration and an ,bn n
=1,2 , . . .� are the Fourier coefficients of f�t� which are cal-
culated through the fast Fourier transform �FFT� algorithm.
The zeroth order coefficient is not included in the right hand
side of Eq. 20 since it corresponds to the time average of
f�t�, which will be zero in view of Eq. �4�.

The validity of the above numerical implementation was
investigated in the case of small pressure disturbances, where
numerical results are compared against the predictions of lin-
ear theory. The dimensionless scattering cross section was
calculated numerically, Eqs. �5� and �14� or �15�, and theo-
retically, Eq. �18�, as a function of the forcing frequency for
small sound amplitudes and a standard set of parameter val-
ues provided in the following section. Agreement between
computations and linear theory was always achieved. It was
also reaffirmed that when ��1 and C=1 the three constitu-
tive laws predict the same dynamic behavior for the mi-
crobubble. However, when nonlinear perturbations are ap-
plied the three constitutive laws can exhibit quite different
dynamic behavior as will be seen in the following.

It should be stressed that in graphs depicting dimension-
less scattering cross section shown in the following, the ex-
ternal frequency, � f, will be scaled with resonance frequency,

�Res, obtained from the characteristic polynomial of Eq. �17�;
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�I goes like 1 /� f hence �Res is appropriately independent of
the forcing frequency. They are both in the MHz regime,
which is also the frequency range of diagnostic imaging.
Scattering cross section is scaled with the microbubble inter-
facial area 4�R0

2.

IV. RESULTS AND DISCUSSION

In this section a detailed parametric study is presented
on the effect of the microbubble properties, e.g., size and
mechanical properties of the membrane, and the ultrasound
characteristics, i.e., amplitude and frequency, on the response
of an insonated contrast agent. The resonance frequency as
well as the scattering cross section of the fundamental and
higher harmonics are monitored when moderate or large
acoustic disturbances are applied. The parametric study is
conducted for the KV, the MR, and the SK membrane con-
stitutive laws while the effect of residual stresses on back-
scatter is also investigated. Results with the KV mode are
only marginally presented in order to show the limitations of
this model for large sound amplitudes. The parameters of the
problem are based on those provided from experimental and
theoretical studies available in the literature of contrast agent
research. In particular, an estimate for the membrane stiff-
ness and friction was obtained for Sonovue™ �Gorce et al.,
2000�, Sonazoid �Sarkar et al. 2005�, Albunex �De Jong and
Hoff, 1993�, and different polymer encapsulated air bubbles
�Hoff et al. 2000� by fitting the Church–Hoff model to their
experimental recordings of scattering cross section and
sound attenuation. Based on the same set of experimental
data we use ��15 nm as a characteristic membrane thick-
ness and take R0�3 �m as an indicative microbubble ra-
dius. Based on the same studies we allow for variation of Gs

between 35 and 105 MPa and �s between 0.6 and
1.6 kg / �m s� and, unless otherwise specified, we use the
former values for Gs and �s as characteristic. Nevertheless,
as will be seen in the following, the area dilatation modulus,
K, is the determining factor in the case of spherosymmetric
bubble pulsations. Consequently, fitting data obtained in the
regime of low acoustic disturbances can provide K=3GMR

for MR membranes or K=GSK�1+2C� for SK membranes.
We also set parameters b and C to 0 and 1 for the MR and
the SK constitutive laws, respectively, and provide the
framework for estimating these parameters based on mea-
surements.

The physical properties of water are used for the host
liquid; �l=998 kg /m3, �l=0.001 kg / �m s�, Cl=1500 m /s.
In the absence of any reliable data on membrane porocity,
the interfacial tension 	 is set to the average of the gas-
membrane and liquid-membrane tensions �Church, 1995;
Khismatullin and Nadim, 2002�. It is almost the same as the
gas-host fluid interfacial tension, 0.072 kg /s2, for the case of
a shell with very small thickness. In any case it does not
significantly affect microbubble response.

Experimental measurements, Hoff et al. �2000� among
others, indicate that the scattering cross section from encap-
sulated bubbles is weaker than the one obtained from free
bubbles. It was argued by Khismatullin and Nadim that this

is basically due to membrane viscosity rather than elasticity.
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Even though this is a valid argument it will be seen in the
following that if the proper constitutive law for the mem-
brane is not known, predictions of the resonance frequency
based on simplified models may be in significant error. Reso-
nance frequency is heavily dependent on the membrane area
dilatation modulus and it could be the case that the scattered
signal from a microbubble is relatively weak simply because
the ultrasonic beam is out of resonance. The total scattering
cross section as a function of forcing frequency, subject to
increasing sound amplitude and for the four types of bubble
behavior examined in the present study, i.e., a free bubble
and a microbubble with a KV, a MR or a SK membrane, is
presented in Fig. 1. The response refers to the state of pul-
sation at which the microbubble performs steady oscillations,
i.e., after the initial transient period has elapsed. For refer-
ence we note that the dimensional scattering cross section for
the Kelvin–Voigt model in Fig. 1�b� at resonance, becomes
1244 �m2 in dimensional form upon multiplication by 4�R0

2

with R0=3 �m.
Increasing the sound amplitude affects encapsulated

bubbles by varying the effective area dilatation modulus of
their membrane, i.e., XM� / ��2−1� for isotropic tension. In an
average sense over one period of volume pulsation after ini-
tial transients have elapsed, �2−1 essentially represents the
relative area dilatation A /A and for a material obeying
Hooke’s law the ratio XM� / ��2−1� is a constant that equals
the area dilatation modulus �Barthès-Biesel et al., 2002�. Any
deviation from this behavior is identified as nonlinearity of
the material. This is true for membranes that obey the MR as
well as the SK constitutive laws. It results in an increase in
the total scattering cross section for MR membranes and a
corresponding decrease for SK membranes for reasons to be
explained in detail in the following. Encapsulated bubbles
tend to scatter a smaller amount of radiated energy due to the
additional damping of the shell, as indicated by comparing
peaks among graphs corresponding to free and encapsulated
bubbles in Fig. 1. On the other hand, due to the elasticity of
the encapsulating shell they can store energy, which they can
then scatter back to the surrounding fluid at resonance. For
microbubbles of the size relevant to our study and for large
sound amplitudes, scattered energy primarily depends on the
bubble radius and velocity and is called active scatter
�Hilgenfeldt et al., 1998�. Nevertheless, especially for larger
bubbles, viscous damping due to the encapsulating shell
dominates, hence the decreased scatter from encapsulated
microbubbles versus free bubbles. The combined result of
these effects is clearly illustrated in Fig. 1, based on which it
can be surmised that the attenuation or intensification of vol-
ume oscillations, that is mostly evident in high acoustic am-
plitudes, determines the energy scatter from the microbubble.
This is corroborated by Figs. 2 and 3 where the radial dis-
placement, velocity, and scattered pressure on an encapsu-
lated bubble are plotted at resonance, for increasing sound
amplitude. Due to the effective hardening of SK materials,
i.e., the effective area dilatation modulus increases, the mem-
brane displacement and velocity at resonance increases very
mildly as the amplitude of the disturbance increases, Figs.
3�a� and 3�b�. Consequently, when the sound amplitude in-

creases the total scattering cross section decreases due to the
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disproportionately small increase of the microbubble’s active
scatter in comparison with the external disturbance. When
MR membranes are subject to a sound field of increasing
amplitude their effective area dilatation modulus decreases,
which leads to enhancement of radial displacement and ve-
locity, Figs. 2�a� and 2�b�, that is larger than expected based
solely on the amplitude of the acoustic disturbance. This is
clearly manifested in the amplified total scattering cross sec-
tion in Fig. 1�c�. Comparing the level of total scatter between

FIG. 1. Total scattering cross section vs scaled forcing frequency, when �
=0.5, 1, 1.5, and 2, for �a� a free bubble, �b� a KV, �c� a MR �b=0�, and �d�
a SK �C=1� membrane; vres=1.28 and 2.8 MHz for a free bubble and an
encapsulated microbubble, respectively.
the three constitutive laws under examination, a material
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obeying the KV law is only moderately affected by the am-
plitude of sound exhibiting a slight increase in the total scat-
ter. Overall it can be argued that MR membranes permit
larger deformations than SK membranes and consequently
tend to scatter more echo through changes in the mi-
crobubble volume �active scatter�.

As can be gleaned from Figs. 2�c� and 3�c�, SK mem-
branes develop larger extensional pressure loads for the same
amplitude of the external disturbance after the initial tran-
sient has elapsed, when compared against MR membranes.
In fact, this effect is intensified as their strain hardening na-
ture is accentuated by increasing parameter C. This may ex-
plain experimental observations of shell cracking �Bloch
et al., 2004�, at sonication before any significant area dilata-
tion takes place. Most likely the membrane exhibits small
defects at regions where excessive in plate tensions develop
as a result of the large extensional load, eventually tearing
the membrane apart. The particular polymer shelled contrast

FIG. 2. Time evolution of the �a� external microbubble radius, �b� interfacial
velocity, and �c� pressure load �Pl− Pg�, for a MR membrane on resonance
when �=1 and 2 �v f =2.7 and 2.4 MHz, respectively�; b=0.
agent, BG1135, reportedly does not exhibit any significant
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harmonic or subharmonic content until the moment of crack-
ing, in a fashion similar to strain hardening membranes as
will be seen in the following. On the contrary, strain soften-
ing membranes exhibit very large compressive loads, Fig.
2�c�, that may cause severe deformation and buckling of the
shell �Dollet et al. 2008�.

Figures 4�a� and 4�b� depict average area dilatation,
A /A, as a function of sound amplitude, �, during the phase
of steady pulsation for a MR and a SK membrane. Such plots
can be generated from optical measurements of contrast
agent pulsation, with � viewed as a measure of the load felt
by the shell due to changes in the liquid pressure as a result
of the acoustic excitation. In fact, it has been observed using
the lipid shelled contrast agent BR14 �Emmer et al., 2007�,
that there is an amplitude threshold for the onset of mi-
crobubble pulsation beyond which there is an abrupt increase
in the area dilatation during steady pulsation. As the size of
the microbubbles decreases, this type of threshold behavior

FIG. 3. Time evolution of the �a� external microbubble radius, �b� interfacial
velocity, and �c� pressure load �Pl− Pg�, for a SK membrane on resonance
when �=1 and 2 �v f �3.3 MHz for both cases�; C=2.
was observed at smaller sound amplitudes.
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Indeed, calculations of the area dilatation at steady pul-
sation for a MR microbubble that is insonated by an increas-
ing sound amplitude, reveal that as the membrane becomes
softer, b approaches zero, the response becomes more and
more abrupt, and appears at a lower amplitude threshold,
Fig. 4�a�. Varying the bubble size shows that the response of
smaller microbubbles deviates from linearity at lower ampli-
tudes. The reason for this abrupt increase in area dilatation
for small bubbles lies in the change in resonance frequency
with sound amplitude. The microbubbles used in the simula-
tions shown in Fig. 4�a� are driven below resonance. As the
amplitude of sound increases their resonance frequency de-
creases, owing to the strain-softening nature of the shell, un-
til it hits the forcing frequency in which case an intense
signal is obtained. The change in resonance frequency is
faster for softer membranes hence the steep rise in area dila-
tation when b=0. This effect is present when the Kelvin–
Voigt model is employed, despite the fact that it ignores ma-
terial nonlinearity, and is attributed solely to the increasing
effect of inertia with nonlinearity which also decreases reso-
nance frequency. This is a well known result from nonlinear
bubble dynamics that can be, however, significantly accentu-

FIG. 4. Area dilatation vs sound amplitude for �a� a MR membrane with
different b values, b=0, 0.5, and 1 �the behavior of a KV membrane is also
shown for reference� and �b� a SK membrane with different C values, C
=1, 2, and 3; v f =1.7 MHz.
ated when material behavior is also taken into consideration,
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as illustrated in Fig. 4�a�. In fact, such plots can be used,
along with optical measurements, as a means to characterize
the membrane by estimating b and consequently determine
the degree of softness. Larger microbubbles have smaller
linear resonance frequencies, which may already be below
the forcing frequency in which case vibration onset is not
observed, hence an increase in amplitude will instigate non-
linear resonance sooner, i.e., at a lower amplitude. Such
bubbles exhibit a slow increase in the gradient of the dilata-
tion versus amplitude curve that is characteristic of strain
softening membranes and determines the extent of nonlinear-
ity in the material behavior. A similar parameter estimation
can be employed for SK membranes through a plot like Fig.
5�b� illustrating the effect of membrane hardness, C, on area
dilatation versus sound amplitude curves. In this case the
microbubble is again driven below resonance. However, the
resonance frequency of a strain-hardening material increases
with increasing amplitude and the possibility for resonance is
eliminated. The response of the area dilatation versus ampli-
tude curves is typical of strain-hardening materials with a
decreasing gradient as � increases.

The effect of varying shear modulus Gs on the resonance
frequency is shown in Table I as a function of the constitu-
tive law and the sound amplitude. The resonance frequency
for a given set of parameters corresponds to the maximum in
the first harmonic components of the scattering cross section
over the range of applied forcing frequencies. As was already
known from previous studies �Church 1995; Khismatullin
and Nadim 2002�, for all three constitutive laws the reso-
nance frequency increases with increasing membrane elastic-
ity. As the amplitude of the acoustic disturbance increases,
increasing �, the extent of nonlinearity increases and as a
first effect one notices a decrease in resonance frequency,
slight for KV and more intense for MR membranes in the
above, this is a well-known result from weakly nonlinear
theory of free bubble dynamics. However, when the SK con-
stitutive law is used the resonance frequency exhibits a slow
increase, indicating a progressive stiffening of the membrane

FIG. 5. Fundamental and second harmonic components of the scattering
cross section vs forcing frequency for a SK membrane with C=1 and non-
zero residual stresses at t=0, u0=u�t=0�=−0.01, 0 and 0.01; �=2.
and a concomitant loss of effective system inertia. These
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effects can also be gleaned from the evolution of total scat-
tering cross section for different values of �, shown in Fig. 1.
The deviation in resonance frequency between the predic-
tions of Hooke’s law, as manifested in the KV model, and
those from the MR and SK constitutive laws is on the order
of a few tenths of a MHz which is not negligible, given the
sensitivity of modern imaging techniques, and keeps increas-
ing with increasing amplitude of sound. It should also be
stressed that it is the area dilatation modulus that determines
the microbubble response. In fact, increasing C but varying
Gs so that the product GSK�2C+1� remains constant very
closely reproduces the values of resonance frequency; note
that GSK=Gs�, for amplitudes � as large as 5; see also Table
I. The same is true for the harmonic scatter.

Emphasis should also be placed on the harmonic content
of the scattered signal since this finds extensive use in mod-
ern techniques of nonlinear signal processing �Burns et al.,
2000; Sarkar et al., 2005�. Table II shows the harmonic con-
tent of the scattering cross section of a MR and a SK mem-
brane with varying dilatation modulus, in response to an

TABLE I. Dimensional resonance frequency of the first harmonic compo-
nent as a function of area dilatation modulus and acoustic amplitude, recov-
ered from numerical simulations.

Free bubble

� vres �MHz�
0.5 1.1
1 1
1.5 0.8
2 0.6

Mooney–Rivlin – vres �MHz� �b=0�
Gs �MPa�

� 35 70 105

0.5 2.7 3.7 4.4
1 2.7 3.6 4.4
1.5 2.6 3.5 4.3
2 2.4 3.4 4.2

Skalak – vres �MHz� �C=1�
Gs �MPa�

� 35 70 105

0.5 2.8 3.7 4.4
1 2.8 3.7 4.4
1.5 2.9 3.7 4.4
2 2.9 3.7 4.4
5 3.4 4.1 4.6

Skalak – vres �MHz� �C=2�
Gs �MPa�

� 21 42 63

0.5 2.8 3.7 4.4
1 2.8 3.7 4.4
1.5 2.8 3.7 4.4
2 2.9 3.7 4.4
5 3.4 4 4.5
acoustic disturbance of increasing amplitude. As was seen
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from Figs. 2 and 3, soft membranes exhibit larger displace-
ments and velocities in comparison with hard membranes. As
a result the amount of energy that is returned to the host fluid
is scattered at lower frequencies with respect to KV and SK
membranes. In addition, the content of the scattered signal in
harmonic components, for given amplitude of the acoustic
disturbance, is also increased which makes strain-softening
membranes exceptionally useful for diagnostic tools where
harmonic imaging is a preferred modality. In fact, as the
amplitude of sound increases, the scattered signal from the
fundamental harmonic becomes weaker at resonance, com-
pared to that from a strain-hardening membrane, due to the
appearance of higher harmonics. Another important aspect of
the microbubble response at large amplitudes is the appear-
ance of a subharmonic, � f /2, signal in the backscatter that is
especially evident for MR membranes and that can be quite
useful for nonlinear image processing �Sarkar et al., 2005�;
see also Fig. 6. In general, a rich harmonic content from a
certain contrast agent is a clear indication of a strain-
softening membrane.

The effect of the residual stresses on the scattering cross
section is almost nonexistent for MR or KV membranes.
This is not the case when the membrane material obeys the
Skalak law. The more strain hardening the material is, the
more intense is the shift of the resonance frequency to higher

TABLE II. Harmonic content of the scattering cross section for �a� a KV, �b�
a MR �b=0�, and �c� a SK �C=1� membrane, when �=0.5,1 ,1.5 and 2. To
obtain the actual dimensions one has to multiply the harmonic content by
4�R0

2=113 �m2, where R0=3 �m in these simulations.

KELVIN–VOIGT
	Sc,n

1st 2nd 3rd 4th
� Harmonic Harmonic Harmonic Harmonic

0.5 11.02 0.14 ¯ ¯

1.0 10.58 0.66 0.044 ¯

1.5 10.07 1.16 0.146 0.019
2.0 9.43 1.5 0.28 0.057

MOONEY–RIVLIN �b=0�
	Sc,n

1st 2nd 3rd 4th
� Harmonic Harmonic Harmonic Harmonic

0.5 10.72 0.34 0.011 ¯

1.0 10.06 0.86 0.085 0.01
1.5 9.1 1.4 0.27 0.058
2.0 8.13 1.91 0.62 0.22

SKALAK �C=1�
	Sc,n

1st 2nd 3rd 4th
� Harmonic Harmonic Harmonic Harmonic

0.5 10.88 0.02 ¯ ¯

1.0 10.45 0.085 ¯ ¯

1.5 9.76 0.145 ¯ ¯

2.0 9.26 0.25 0.01 ¯
values as well as the scatter of the fundamental harmonic,
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Tables I and II. For the same reason the residual stresses play
an increasingly important role in the microbubble response,
altering both the resonance frequency and the scattering
cross section. The compressive or expansive nature of initial
displacements that cause the residual stresses plays a pivotal
role in determining these aspects of microbubble behavior. In
particular, compressive initial stresses tend to decrease the
microbubble resonance frequency while decreasing the
amount of scatter at resonance. The opposite is true for posi-
tive initial displacements corresponding to volume expan-
sion. In the latter situation the relative increase in the con-
trast agent’s area amounts to increasing its effective shear
modulus as well. Consequently, the microbubble exhibits
more intense scatter and larger resonance frequencies for a
given amount of residual stresses at t=0, see also Fig. 5.

Nonlinear membrane behavior may explain certain find-
ings of experimental investigations available in the literature.
Sarkar et al. �2005� employed a number of the available
contrast agent models in order to match experimental mea-
surements of the fundamental and the subharmonic scatter
from a Sonazoid solution. In that study the constant elasticity
model fails to capture the plateau in the subharmonic scatter
exhibited by the measurements at very large sound ampli-
tudes, ��10, whereas the Church–Hoff model underpredicts

FIG. 6. Comparison between experimental measurements �Sarkar et al.,
Newtonian, and the strain softening model, of the fundamental and subha
Sonazoid microbubbles.
the subharmonic measurements and cannot satisfactorily
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capture the plateau in the two signals. The authors attribute
part of the failure to the softening of the membrane leading
to higher amounts of scatter than expected based on the
Church–Hoff model, which is not strictly valid when large
membrane displacements are present. We carried out a num-
ber of scattering calculations using the values for Gs�52
�106 kg / �m s2� and �s�0.99 kg / �m s� obtained in the
above study for Sonazoid by fitting the Church–Hoff model
to low amplitude sound attenuation data; R0=1.6 �m. Fig-
ures 7�a�, �d� and 8�a�, �d� from the above study are repro-
duced, Figs. 6�a�–6�d� in the present study, with the addition
of the curve corresponding to the strain-softening membrane
model presented here with b�0. The latter model predicts
the fundamental and subharmonic signals quite well and for
the entire range of sound amplitudes, for relatively large
forcing frequencies, � f �2�4.4 MHz, Figs. 6�c� and 6�d�.
The latter is the resonance frequency for the bubble size used
in the sample under examination. For lower values of the
forcing frequency the model with the strain softening mem-
brane is qualitatively correct but tends to over-predict the
two signals; see Figs. 6�a� and 6�b�. This failure may be
attributed to errors in the estimation of Gs, perhaps due to the
fact that the attenuation data were not acquired at low

� and predictions based on the Church–Hoff, the constant elasticity, the
ic signals when �a�, �b� � f =2� 2 MHz and �c�, �d� � f =2� 4.4 MHz, for
2005
rmon
enough amplitudes for thefitting to be valid, to bubble size
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distribution effects or, more importantly, to variations in
membrane viscosity as a result of the high frequency of the
acoustic disturbance. Namely, a large number of polymeric
materials exhibit a shear thinning behavior when subjected to
high frequency disturbances due to disentanglement of the
polymer chains. Consequently, the membrane material is ex-
pected to exhibit a higher viscosity as low frequencies,
which may account for the systematic over-prediction of the
two signals at low frequencies by the model presented here.

Finally, it should be stressed that for spherosymmetric
pulsations it is the area dilatation modulus that determines
microbubble dynamics, i.e., parameter K=3GMR or GSK�2C
+1� for MR and SK membranes, respectively. Nevertheless,
in the absence of shear, the set of measurements that is typi-
cally carried out in order to estimate Gs and �s, i.e., sound
attenuation and scattering cross section measurements, is
enough to fit K for either type of membrane under isotropic
tension, as long as it is made at the appropriate range of low
sound amplitudes and for fixed thickness �. Parameters b and
C, characterizing the degree of softness or hardness for MR
and SK membranes, can be estimated by carrying out mea-
surements of area dilatation versus sound amplitude, as the
later increases beyond the range of validity of Hooke’s law.
They essentially determine deviations from linearity in the
slope of the stress-area dilatation curve for the particular
membrane material. In the case of strain softening mem-
branes the effect of vibration onset or thresholding, Emmer
et al. �2007�, provide a type of measurement that is quite
sensitive in parameter b, Fig. 4�a�.
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