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Parametric stability and dynamic buckling of an encapsulated microbubble
subject to acoustic disturbances

Kostas Tsiglifis and Nikos A. Pelekasisa�

Department of Mechanical Engineering, University of Thessaly, Pedion Areos, Volos 38334, Greece

�Received 25 September 2009; accepted 20 December 2010; published online 11 January 2011�

Stability analysis of the radial pulsations of a gas microbubble that is encapsulated by a thin
viscoelastic shell and surrounded by an ideal incompressible liquid is carried out. Small
axisymmetric disturbances in the microbubble shape are imposed and their long and short term
stability is examined depending on the initial bubble radius, the shell properties, and the parameters,
i.e., frequency and amplitude, of the external acoustic excitation. Owing to the anisotropy of the
membrane that is forming the encapsulating shell, two different types of elastic energy are
accounted for, namely, the membrane and bending energy per unit of initial area. They are used to
describe the tensions that develop on the shell due to shell stretching and bending, respectively. In
addition, two different constitutive laws are used in order to relate the tensions that develop on the
membrane as a result of stretching, i.e., the Mooney–Rivlin law describing materials that soften as
deformation increases and the Skalak law describing materials that harden as deformation increases.
The limit for static buckling is obtained when the external overpressure exerted upon the membrane
surpasses a critical value that depends on the membrane bending resistance. The stability equations
describing the evolution of axisymmetric disturbances, in the presence of an external acoustic field,
reveal that static buckling becomes relevant when the forcing frequency is much smaller than the
resonance frequency of the microbubble, corresponding to the case of slow compression. The
resonance frequencies for shape oscillations of the microbubble are also obtained as a function of
the shell parameters. Floquet analysis shows that parametric instability, similar to the case of an
oscillating free bubble, is possible for the case of a pulsating encapsulated microbubble leading to
shape oscillations as a result of subharmonic or harmonic resonance. These effects take place for
acoustic amplitude values that lie above a certain threshold but below those required for static
buckling to occur. They are quite useful in providing estimates for the shell elasticity and bending
resistance based on a frequency/amplitude sweep that monitors the onset of shape oscillations when
the forcing frequency resonates with the radial pulsation, � f =�0, or with a certain shape mode,
� f =2�n. An acceleration based instability, identified herein as dynamic buckling, is observed during
the compression phase of the pulsation, evolving over a small number of periods of the forcing,
when the amplitude of the acoustic excitation is further increased. It corresponds to the Rayleigh–
Taylor instability observed for free bubbles, and has been observed with contrast agents as well, e.g.,
BR-14. Finally, phase diagrams for contrast agent BR-14 are constructed and juxtaposed with
available experimental data, illustrating the relevance and range of the above instabilities.
© 2011 American Institute of Physics. �doi:10.1063/1.3536646�

I. INTRODUCTION

Microbubbles that are surrounded by a thin viscoelastic
shell, Fig. 1, are also known as contrast agents. They can
deform when pulsating subject to an external acoustic distur-
bance, either as a result of harmonic excitation of shape
modes1,2 or as they are sonically destroyed by means of a
large mechanical index �MI� acoustic excitation;3 the me-
chanical index is a quantity that characterizes the intensity of
sonication and is defined as MI= Pac

− /��, where Pac
− is the

peak rarefractional acoustic pressure normalized by 1 MPa
and � is the center frequency of the ultrasound, normalized
by 1 MHz. The ability of contrast agents to deform and frag-
ment is essential in many ultrasound based applications. For

example, the rate of reappearance of contrast microbubbles
after sonic destruction is a quantitative measure of
perfusion.4 Under low MI sonication surface modes may ap-
pear, which can generate intense microstreaming close to the
microbubble. This aspect of the flow field can then be ex-
ploited for local drug delivery in cell permeability studies.5

High speed photography of pulsating contrast agents in the
vicinity of a boundary6,7 has shown jet formation directed
toward the boundary, in a manner similar to free bubbles,
indicating the potential use of microbubbles as microsyringes
in sonoporation. Alternatively, knowledge of the eigenfre-
quencies of shape modes can be useful in estimating impor-
tant viscoelastic properties of the encapsulating shell, such as
shell elasticity and friction, by analyzing the spectrum of
pulsating contrast agents that undergo shape oscillations.
Such dynamic patterns have been observed with encapsu-
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lated microbubbles.2,6 Careful superposition with theoretical
modeling can provide an invaluable tool for characterization
of the shell material.

Clearly then the ability to predict and control contrast
agent deformation is important in many biomechanical appli-
cations. At the same time none of the available models for
contrast agents can incorporate surface modes. In the case of
free bubbles, however, a comprehensive theory has been de-
veloped based on earlier studies8–10 on the growth of shape
modes on the interface of a pulsating bubble. More recently,
mostly due to the growing interest in the phenomenon of
sonoluminescence, more detailed analytical studies have
been carried out addressing the different types of instabilities
that arise, i.e., parametric, afterbounce, Rayleigh–Taylor, in
the parameter space defined by the amplitude of the acoustic
disturbance and the bubble equilibrium radius.11–14 In the
context of the present study, an effort is made to connect the
above line of research with classical plate and shell stability
theory15 in order to formally assess the effect of viscoelastic
properties of the membrane on the stability of contrast
agents.

Modeling the shell that coats and protects the mi-
crobubble is an issue that is central to its stability. Contrast
agent coatings normally consist of albumin, lipid, or polymer
material. The ones that consist of albumin protein, e.g., Op-
tison, or polymer, e.g., BiSphere, BG1135, behave like very
stiff viscoelastic solids that break during compression
through the formation of cracks at randomly selected parts of
the interface16 before exhibiting any significant pulsation.
Following shell rupture gas leakage takes place and subse-
quently recorded pulsations correspond to free gas bubbles.
Lipid surfactant shells, e.g., Sonazoid, Sonovue, and Defin-
ity, tend to be softer, i.e., smaller stiffness, and more respon-
sive to acoustic disturbances in the sense that their backscat-
tered signal is richer in harmonic content.17 Early attempts to
model the mechanical behavior of the shell treated it as a
viscoelastic solid of finite18,19 or infinitesimal20–22 thickness
with constant viscosity and elasticity. These models suc-
ceeded in predicting the larger resonance frequencies of
coated microbubbles in comparison with those of free
bubbles. This fact instigated further development of vis-
coelastic solid models in view of the failure of previous
models, treating the shell as a Newtonian fluid with constant
surface tension and dilatational viscosity, to predict the

resonance frequency of contrast agents, e.g., Optison,23 for a
realistic value of surface tension. The constant elasticity
model17 associated elastic tensions with the product between
elasticity and area dilatation and provided better agreement
with acoustic data for the fundamental and subharmonic
backscatter from Sonazoid solutions than the original vis-
coelastic models20–22 that were more relevant to small ampli-
tude acoustic disturbances.

At that point, it was also observed that contrast agents
coated by a lipid shell, such as Sonazoid or Sonovue, tend to
be more yielding to acoustic disturbances exhibiting larger
deviations from their equilibrium radius along with a broader
spectrum in their backscatter signal.3,17 Experimental obser-
vations report a dependence of shell elasticity and viscosity
on microbubble radius.17,24–26 Subsequently, a number of
models emerged incorporating nonlinearity in the depen-
dence of shell viscoelastic properties in response to external
disturbances, in an attempt to recover a number of effects
associated with large amplitude pulsations of contrast agents,
such as super/subharmonic backscatter,17,27 “vibration
onset,”28 and “compression only” or “expansion only”
behavior.28–30 More specifically, a strain softening or strain
hardening constitutive law was employed,31 Fig. 2, in order
to recover expansion only or compression only behavior, re-
spectively, as a result of the inherent asymmetry of the con-
stitutive law in response to compressive or expansive
loads.32 In the same study, strain softening behavior was as-
sociated with a large harmonic content and an abrupt vibra-
tion onset with increasing sound amplitude as a result of
decreasing resonance frequency. These findings were verified
by a more recent study33 that employed simplified nonlinear
models for the shell material and carried out ultrasound at-
tenuation measurements in a contrast agent suspension in
order to estimate model parameters. All the above experi-
mental observations, however, cannot be captured for a
single set of values of the viscoelastic parameters. A different
approach was adopted by Marmottant et al.30 for the descrip-
tion of lipid monolayers, assuming infinite softness at com-
pression and a piecewise linear behavior during expansion,
Fig. 2, consisting of a linear isotropic tension-extension seg-
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FIG. 1. Schematic diagram of a deformed microbubble subject to an acous-
tic disturbance.

FIG. 2. Schematic diagram of three available constitutive laws for contrast
agents �a� linear behavior, �b� strain softening, �c� strain hardening, and �d�
the Marmottant model.
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ment followed by a flat segment with constant tension corre-
sponding to the air-water surface tension. The compressive
part of the constitutive law is also flat corresponding to a
buckled state with zero tension. In this fashion the constitu-
tive law behaves asymmetrically during compression and ex-
tension, with the compressive part being more abrupt, thus
yielding compression only behavior. This approach, how-
ever, cannot easily be extended to account for shape defor-
mation and cannot accurately recover the microbubble har-
monic content. The latter issue was verified in Ref. 33, where
it was also seen that imposing a constraint of non-negativity
in effective surface tension recovers the Marmottant30 model
and exhibits a compression only type behavior. Finally, it
was also shown34 by carrying out stability analysis of the
encapsulated bubble at equilibrium subject to gas diffusion
through the shell, that the ability of the shell to sustain a
certain amount of compressive load is essential for stability
against dissolution.

The nonlinear dependence of shell viscosity on sound
amplitude, i.e., shear thinning behavior, was also investi-
gated as an alternative attempt to understand compression
only behavior.25 Shear thinning behavior is more suitable for
obtaining accurate estimates of backscatter at large forcing
frequencies, for which shell viscosity is overestimated when
it is based on measurements at lower frequencies.17,24,25

Based on its performance thus far, this line of research,
namely, nonlinear dependence of its properties when the
shell is treated as a viscoelastic solid, is currently pursued
further in order to provide a more comprehensive picture of
contrast agent behavior.

Alternatively, the shell was treated as a viscoelastic
fluid35 via a Maxwell rheological model employing the shell
relaxation time and shear viscosity as the main parameters.
This approach was prompted by the increased smoothness of
phospholipid monolayers forming many lipid shells35 such as
BR14, MP1950, Sonovue, etc., and can capture certain as-
pects of contrast agent response. However, it also tends to
provide unreasonable predictions for resonant frequencies,
e.g., it predicts lower resonance frequencies for contrast
agent sizes in the range of 1–2 �m when compared against
those of free bubbles. This approach seems to be more rea-
sonable for contrast agents used for drug delivery,36 in which
case much thicker shells, �500 nm, are used consisting of
very viscous oils, e.g., triacetin or soybean oil.

The viscoelastic solid model presented in an earlier
study,31 referred to as I henceforth for brevity, is employed in
order to describe membrane deformation in response to
acoustic disturbances. It follows the approach originally in-
troduced for the study of capsules and red blood-cells,32,37

which are treated as liquid drops that are surrounded by an
elastic membrane,38 by allowing nonlinear stress-strain con-
stitutive laws that deviate from the normally applied
Hookean type behavior17–21 that is only valid for small dis-
placements. It is clearly not the final model on contrast agent
behavior but it contains useful features that are essential in
addressing important aspects of contrast agent behavior that
was reported in the literature. As reported in I, nonlinear
strain softening behavior can explain the high harmonic con-
tent of lipid-shelled contrast agents17 and the effect of abrupt

vibration onset28 due to the decrease in resonance frequency
with increasing sound amplitude. Furthermore, the compres-
sion only and expansion only behaviors were captured in I
by employing the inherent asymmetry in the strain hardening
and strain softening constitutive laws. Finally, and very im-
portantly, this approach allows a systematic extension of the
theory to account for deviations from spherosymmetry in the
shape of contrast agents via the principal extension ratios in
the constitutive law. To this end, the bending resistance, or
bending elasticity, is introduced as an additional parameter
that accommodates the anisotropy39 of lipid bilayer/
monolayer encapsulating shells that are used in manufactur-
ing liquid capsules/contrast agents. More specifically, the
elasticity of the material along the membrane is different
from that in the normal direction, owing to the narrow struc-
ture of the shell. To distinguish between a contrast agent and
a free bubble, tensions in the latter are isotropic and are
characterized by a physical constant, surface tension. In an
elastic shell, tensions are nonisotropic and they may be as-
sociated with stretching and bending energy. For a classic
shell, both types of energies involve an elasticity modulus. In
fact, the bending elasticity modulus, or bending stiffness,
characterizes the resistance of the shell to deform and de-
pends linearly on the area dilatation modulus and the mo-
ment of inertia of the shell cross section.15 Contrast agents,
however, are very thin, essentially two-dimensional, noniso-
tropic, and consequently the resistance to bending is decor-
related from the area dilatation modulus, i.e., resistance to
stretching.39 Thus, the shell is modeled via the membrane,
also called stretching, and bending elasticities, the shell vis-
cosity, and an additional parameter that accounts for the shell
softness or area compressibility.

In this fashion, phenomena such as shell deformation,
parametric shape pulsations, and buckling can be captured,
in the manner established from studies of capsule
dynamics.40,41 In particular, static bending, or buckling, of an
isotropically loaded spherical shell arises when the latter can
achieve a lower energy configuration by deforming, as com-
pared to a severely compressed spherosymmetric shell. In the
presence of an acoustic excitation, energy is exchanged with
the microbubble over a large number of periods. Then shape
deformation may also arise as a preferential arrangement of
the microbubble, over spherosymmetry, when resonance
takes place between the forcing frequency and the resonance
frequencies of shape modes of the contrast agent. In fact, this
type of interaction may lead to deformation for smaller
sound amplitudes than those required for static buckling to
take place. Implicit in the above discussion is the assumption
of a finite bending resistance that allows the contrast agent to
sustain compressive stresses. This is a deviation from the
Marmottant model that assumes zero tension for all compres-
sive strains. In other words, the contrast agent buckles im-
mediately as soon as compression takes place. Nevertheless,
contrast agents with lipid shells, e.g., BR14, have been ex-
perimentally observed to acoustically deform1 at relatively
small sound amplitude and acquire shapes dominated by low
axisymmetric Legendre modes, e.g., P2 and P4, in a manner
free bubbles do. This is an indication of a finite bending
resistance, since elastic shells tend to yield modes of progres-
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sively smaller wavelength as their bending resistance goes to
zero.15

In Sec. II the problem formulation is outlined for axi-
symmetric pulsations of an encapsulated microbubble in re-
sponse to an external acoustic disturbance. Then, in Sec. III
the stability analysis is presented for small shape perturba-
tions on a radially pulsating microbubble. The radially sym-
metric base solution is given in Sec. III A. Subsequently, in
Sec. III B the linear stability equations pertaining to axisym-
metric shape disturbances are derived in a manner similar to
the case of a free bubble, with the exception of the interface
that is taken to be a thin viscoelastic shell. In Sec. IV A static
stability of the shell is investigated and the classic results for
buckling of perfectly spherical shells are recovered42 via
static stability analysis and in the context of low frequency
acoustic excitations. Then, dynamic considerations are intro-
duced, the eigenfrequencies of the axisymmetric shape
modes are derived, and stability criteria for parametric insta-
bility and dynamic buckling, corresponding to moderate and
large acoustic disturbances, respectively, are obtained in
Secs. IV B and IV C In the former case, this is achieved via
Floquet analysis43 performed numerically on the stability
equations for the different shape modes. As will be seen in
Sec. IV C, contrast agents can also deform violently, over a
small number of periods, during the compressive phase of
their pulsation in response to a large acoustic amplitude, in a
manner that is similar to free bubbles. This type of behavior
is identified as “dynamic buckling” of contrast agents, it cor-
responds to the Rayleigh–Taylor instability of free bubbles
and is captured by numerical integration of the stability
equations for the different shape modes. Next, in conjunction
with available experimental data1 for contrast agents exhib-
iting parametric oscillations in response to acoustic distur-
bances, phase diagrams are presented in the plane defined by
the equilibrium radius and the sound amplitude, Sec. IV D,
and conclusions are drawn in Sec. V. Finally, details on the
expansions of the normal and tangential components of the
elastic stresses, obtained for shell material obeying the
Mooney–Rivlin �MR� or Skalak et al. �SK� constitutive laws,
are provided in the Appendix.

II. PROBLEM FORMULATION

We consider an encapsulated microbubble with equilib-
rium radius Req, submerged in a Newtonian liquid of density
�l, dynamic viscosity �l, and static pressure Pst� , Fig. 1. The
microbubble consists of ideal gas encapsulated in a vis-
coelastic membrane of small thickness �sh, in comparison
with the radius, surface shear modulus Gs, bending elasticity
kB, surface viscosity �s, while it is allowed to be in a pre-
stressed state at static equilibrium. It should also be noted
that throughout this study primed letters denote dimensional
variables.

A sinusoidal pressure wave is imposed on the far field
pressure characterized by amplitude � and forcing frequency
� f�,

P�� = Pst� �1 + � cos � f�t�� . �1�

At static conditions the fluid surrounding the microbubble is
quiescent and, accounting for interfacial tension, the pressure
inside the bubble is related to that in the far field via the
equation

PG� �t� = 0−� − Pst� =
2	

R��t� = 0−�
+ 
Fn�t� = 0� , �2�

with R��t�=0−� denoting the initial microbubble radius, 	 the
mean surface tension between the gas surrounded by the
membrane and the external liquid, and 
Fn the normal com-
ponent of the residual elastic stress; 	 will be relatively small
for the viscoelastic membranes studied here. In the absence
of any residual stresses at t�=0, in which case 
Fn=0, the
initial radius is the equilibrium radius Req of the bubble.
More details on the force balance on the interface are pro-
vided in Secs. II A–II C.

Upon application of the acoustic disturbance the mi-
crobubble starts pulsating. The effect of different constitutive
laws describing the membrane viscoelastic behavior on the
spherosymmetric pulsations of the microbubble was exten-
sively studied in I. In that context, after the initial transient
has elapsed, the microbubble will eventually perform steady
radial pulsations characterized by the forcing frequency � f�,
as a result of viscous damping in the surrounding fluid and,
more importantly, in the shell. This assumption is, however,
contingent upon the stability of the spherosymmetric pulsa-
tion. Loss of stability and microbubble deformation deter-
mine the onset of parametric shape oscillations and, in more
extreme conditions, break-up of the shell and gas leakage.

The present study focuses on establishing criteria for
loss of spherosymmetry in pulsating contrast agents, subject
to axisymmetric disturbances. This assumption is motivated
by relevant studies of microbubbles without coating which
were found to first lose stability to axisymmetric8,9,11–13

mode and by optical observations of deformed contrast
agents performing shape oscillations.1 Coupling between
classical fluid dynamics and the mechanics of the shell is
targeted as it generates interesting dynamic phenomena that
can be employed in order to optimize and control the behav-
ior of contrast agents. Initially, the shape of the microbubble
is taken to be spherical onto which a small perturbation is
imposed, Fig. 1, consisting of one of the Legendre polyno-
mials. Subsequently, the microbubble is assumed to remain
axisymmetric at all times. The external radius of the mi-
crobubble at equilibrium Req is assigned as the characteristic
length of the problem. Since the time scale for the mi-
crobubble oscillations is determined by elastic forces, the
characteristic time of the problem is ��Req

3 /GS, the charac-
teristic velocity, �GS /�Req, and the dimensionless forcing
frequency � f =� f���Req

3 /GS; GS is the surface shear modulus
of the membrane. Finally, the characteristic pressure is de-
fined via the characteristic velocity as GS /Req. Provided the
velocity of the interface does not become excessively large,
liquid compressibility can be excluded from the analysis to
first order. Since damping is controlled by the encapsulating
shell,19,31 liquid viscosity is neglected and potential flow is
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considered in the host liquid. The problem formulation de-
scribing the dynamics of a coated microbubble, assuming
axisymmetry, is outlined below.

Considering incompressible, potential flow the velocity
potential Φ in the ambient fluid is provided by the Laplacian

�2Φ = 0, V� = �� Φ. �3�

In the same context, and neglecting buoyancy effects owing
to the small size of the microbubbles, the pressure and ve-
locity fields satisfy Bernoulli’s equation everywhere in the
host liquid,

�Φ

�t
+

1

2
��Φ�2 + P = P�. �4�

Due to negligible density and kinematic viscosity of the gas
inside the bubble, we take the microbubble pressure to be
uniform. In addition, owing to the very short time frame over
which the phenomena that are investigated in the present
study evolve, we can neglect heat transfer to and from the
surrounding liquid, to a first approximation, and consider
adiabatic oscillations. Consequently, the variation of the
bubble pressure with time is given by

PG�t = 0�� 4
3��� = PG�t�VG

� �t� , �5�

where � denotes the polytropic constant, 1
�
1.4, and VG

the dimensionless instantaneous volume of the bubble; for an
adiabatic process �=1.4.

Quiescent flow conditions prevail in the far field with the
pressure provided by the acoustic disturbance,

r� → �: V� → 0, P → P�� . �6�

The kinematic condition forcing points on the surface to
move with the fluid velocity reads

r� = r�s = re�r:
dr�s

dt
= V� , �7�

where r�s denotes the position vector of a material point on
the surface of the bubble and s denotes the arc-length along
the interface. Based on the normal and tangential vectors on
the interface,

n� =
r��

�r�
2 + r2��

2
e�r −

r�

�r�
2 + r2��

2
e��, �8a�

e�s =
r�

�r�
2 + r2��

2
e�r +

r · ��

�r�
2 + r2��

2
e��, �8b�

�s

��
= �r�

2 + r2��
2, �8c�

we obtain the two kinematic conditions describing the mo-
tion of the interface,

	dr

dt
	

r0,�0

=

Φ�r� +
�Φ

�n
r��

�r�
2 + r2��

2

r�
2 + r2��

2 , �9a�

	d�

dt
	

r0,�0

=

Φ���r −
�Φ

�n
r�

�r�
2 + r2��

2

r�r�
2 + r2��

2�
. �9b�

� is a Lagrangian variable identifying different material
points along the interface and denotes differentiation when
used as subscript. In view of the assumption for potential
flow in the surrounding liquid, only the normal component,
Eq. �9a�, of the kinematic condition is enforced. Due to axi-
symmetry, derivatives with respect to the arc-length along
the interface should satisfy the following conditions:

�r

��
=

�Φ

��
=

�2Φ

�� � n
=

�2�

��2 = 0, at � = 0,1, �10�

corresponding to the two poles of the coordinate system. The
above relations reflect the constraints for continuity and sym-
metry at the poles, i.e., �=0,1, as a result of axisymmetry.
The problem formulation is completed by establishing the
force balance on the shell-fluid interface. This part of the
formulation determines the flow-structure interaction aspect
of the problem that underpins its particular nature and war-
rants careful analysis.

A. Mechanics of the interface

The force balance on the interface is written as

r� = r�s:
− PI +
1

Rel
�l� · n� + PGn� =

1

We
��� s · n��n� + 
F� ,

�11�

where n� denotes the inward pointing unit normal vector
with respect to the fluid surrounding the bubble, �� s denotes
the surface gradient on the microbubble’s interface, 
F�

the resultant force due to the viscoelastic stresses on the
membrane, and I ,�1=�Vi /�xj +�Vj /�xi, the unit and devia-

toric stress tensor, respectively; We=GS /	 is the Wember
number which compares elastic with capillary forces and
Rel=��GSReq /�2 is the Reynolds number which compares
elastic with viscous forces in the liquid. If we consider water
as the host liquid, density �=1000 kg /m3 and dynamic vis-
cosity �l�0.001 kg / �m s�, surrounding a microbubble with
an equilibrium radius Req as small as 1 �m and a relatively
small surface shear modulus, Gs�0.1 N /m, Rel�10 which
justifies use of potential theory.

Upon application of a differential force balance on the
shell and allowing its thickness to smoothly vanish, the nor-
mal and tangential force balances on the interface are
recovered,40,44

PG − P =
1

We
��� s · n�� + 
Fn, �12a�

e�s ·
1

Rel
�l · n� = 
Ft � 0, �12b�


F� = 
Fnn� + 
Fte�s = − �� s · T , �13�

with
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T = � + q�e�s, � = �se�se�s + ��e��e��, q� = qn� �14�

denoting the complete interfacial tension tensor; � signifies
the in-plane viscoelastic tension tensor and q�e�s the transverse
shear tensor which provides the shear tensions as a result of
the bending moments that develop on an axisymmetric shell.
It contains the transverse shear force resultant q� =qn� per unit
length, Fig. 3, thus allowing the shell to support a component
of the stress resultant tensor that is normal to the deformed
interface,44 i.e., n� ·T�0. Equations �12a�, �12b�, �13�, and
�14� are valid on an interface patch cut out from the shell by
two adjacent meridian planes and two sections perpendicular
to the meridians, Fig. 3. Performing a torque balance in the
same manner and focusing on the same infinitesimal inter-
face patch, we recover the differential moment equilibrium44

relating the shear stress component q to the bending mo-
ments m tensor,

n� � ��� s · m� = �T · �� � � r�s. �15�

It corresponds to the equilibrium among the moments that
tend to bend the interface around an axis that is tangential to
the parallel circles on the interface, axis x in Fig. 3. Owing to
axisymmetry, this is the only allowable type of bending since
no net torque is generated around the axis that is tangent on
the meridian circle, axis y in Fig. 3. The mechanics of the
interface as prescribed via Eqs. �12a�, �12b�, and �13�–�15�
are valid for an axisymmetric shell with negligible inertia.
They are used in order to calculate the three unknown com-
ponents of the axisymmetric tension tensor, �s, ��, and q,
defined per unit length of the shell material. The components
of the moment tensor are obtained via the change in local
curvature as will be seen in the following. This approach
has been adopted in Ref. 40 for the study of the effect of
bending resistance on capsule deformation. An alternative
approach for thin shells is provided by Timoshenko and
Woinowsky-Krieger,15 where the stress components are first
integrated along the shell thickness taken to be very small,
i.e., along z axis in Fig. 3, and then the force and torque

balances are derived directly on the interface patch shown in
Fig. 3 leading to the same problem formulation.

In order to recast the formulation in a more specific
form, the Cartesian curvature tensor is evaluated45 as B

�� sn� . Its components are represented in the �a�1 ,a�2 ,n��
= �e�s ,r sin �e�� ,n�� basis as bij =a� i ·B ·a� j i , j=1,2.

�� s = �
i=1

2

a� i �

�ui
i = 1,2, u1 = ��or s�, u2 = � �16�

denotes the surface gradient operator where

a� i =
�r�s

�ui
, i = 1,2 a� i =

�− 1� j�a� j � n��
�a�1 · a�2 � n� �

,

�17�
i, j = 1,2 i � j

are the covariant and contravariant basis vectors, respec-
tively. Tensor B is a 2�2 symmetric matrix. When the shape
of the interface, the elastic tensions, and the bending mo-
ments are axisymmetric, the principal directions on the inter-
face become t�1=e�s, t�2=e��, and the two principal curvatures

k1 = ks =
r�

2��

��r���2 + r�
2�3/2 +

rr���� − rr����

��r���2 + r�
2�3/2

+
��

��r���2 + r�
2�1/2 =

1

r1
, �18a�

k2 = k� =
��

��r���2 + r�
2�1/2 −

r� cot���
r��r���2 + r�

2�1/2 =
1

r2
. �18b�

r1 ,r2 denote the radii of curvature along the meridional and
parallel lines of the interface, Fig. 3, while the mean curva-
ture is simply km= �k1+k2� /2. Thus, the principal directions
of � and m coincide with the axisymmetric unit vectors,

� = �se�se�s + ��e��e��, m = mse�se�s + m�e��e��. �19�

Substituting the above expressions into Eqs. �13�–�15�, we
find


F� = 
Fnn� + 
Fte�s = �ks�s + k��� −
1

r0

�

�s
�r0q��n�

− � ��ss

�s
+

1

r0

�r0

�s
��s − ��� + ksq�e�s, �20�

q =
1

r0

�r0

�s
� �

�r0
�r0ms� − m�� , �21�

with r0=r sin �, see also Fig. 3. Equations �21� and �22� are
in agreement with the classical equations of axisymmetric
shell theory derived in spherical coordinates.15

In Secs. II B and II C, the membrane stress components,
�s and ��, as well as the principal moment components, ms

and m�, are evaluated via the strain and bending energy func-
tions. The relations that arise involve two different stiff-
nesses, namely, stretching and bending stiffness, owing to
the anisotropy of the shell material.39

r1

z

y

x

r0

dφ

τs
q

ms

r2




qq dθ
θ




s

s
ττ dθ
θ

τφ

τφ

mφ

mφ




s

s
mm dθ
θ dθ

FIG. 3. Schematic diagram of the resultant stresses and moments on an
interface patch of a spherical shell.
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B. Constitutive equations for in-plane viscoelastic
tensions

Based on the above analysis, the shell/liquid interface is
treated as a two-dimensional surface that can sustain in-
plane, or membrane, stress resultants as well as shearing
stress resultant forces in the direction normal to the interface.
As a result of these forces, it can stretch, or compress, and
bend. In the former case, in-plane deformations are generated
corresponding to straining, i.e., stretching or compression, of
the material in the two principal directions. In the latter, the
interface deforms aspherically by locally rotating around the
two principal directions, see Fig. 3. In the following, we
briefly present the general framework for describing the me-
chanical behavior of a viscoelastic membrane at equilibrium,
taken to be thin in comparison with its radius as is normally
the case with contrast agents used in ultrasound diagnostic
imaging. The types of material constituting the shell coating,
i.e., albumin, polymer, or lipid monolayer, are by nature an-
isotropic with respect to the above two kinds of deformation.
The membrane stress resultants are derived in the present
subsection via the appropriate constitutive law describing en-
ergy variations due to straining of the material lines. Care is
also taken of the fact that most materials do not respond to
external forces in a linear fashion. Rather, they exhibit a
nonlinear stress-strain relation at large deformations. The
general theory has been developed in the context of studies
of capsule dynamics,32,37,39,40,46,47 where two major families
of shell materials are treated, namely, strain softening46 or
strain hardening47 shells. The theory can be extended to pro-
vide the elastic tensions that develop on contrast agent coat-
ings provided the proper constitutive law, i.e., the strain en-
ergy function, is known.

The principal components of the elastic tension tensor on
a deformed two-dimensional membrane can be related to the
deformation tensor via the strain energy function w�I1 , I2�
�Refs. 37 and 46� per unit area of the membrane,

� =
2

JS
� �w

�I1
A · AT +

�w

�I2
Js

2�I − N� N� �� . �22�

A represents the surface displacement gradient whose prod-
uct with its transpose possesses two nonzero eigenvalues
�1

2 ,�2
2 that correspond to local principal axes of deformation

in the tangential membrane plane and represent the principal
extension ratios along the same axes �x and y in Fig. 3 cor-
responding to the tangents on the parallel and meridian
circles of the interface�,

�i =
dsi

dSi
, indices are not summed, �23�

where dsi and dSi indicate lengths of line elements in each
one of the principal directions in the deformed and the ref-
erenced state. In the case of axisymmetry,

�1 = �s =
S��t�

S��t = 0�
, �2 = �� =

r0�t�
r0�t = 0�

. �24�

Upon introduction of the Green–Lagrange surface deforma-
tion tensor e, defined as

e = 1
2 �AT · A − �I − n�n��� , �25�

the ratio Js between the deformed and undeformed local sur-
face areas, and the 2d strain invariants46 can also be defined
as

JS = �1�2 = �det�AT · A + n�n��,

�26�
I1 = 2 tr�e� = �1

2 + �2
2 − 2, I2 = Js

2 − 1 = �1
2�2

2 − 1.

The two invariants I1, I2 denote elongation of a local line
element and the local area dilatation, respectively.

The strain energy w�I1 , I2� depends on the nature of the
membrane material and assumes different forms, known as
the constitutive law of the material, as the mechanical behav-
ior of the membrane changes. The constitutive laws that de-
scribe the behavior of lipid monolayers or polymers that
form most known shells are not fully known yet. Thus far,
the available models assume either a linear stress-strain
relationship,18–22 e.g., Hooke’s law, as this is employed in the
de Jong or the Church–Hoff models, a strain softening, or
strain hardening behavior,31,33 e.g., Mooney–Rivlin or Skalak
type models, or a hybrid of the latter two behaviors, e.g.,
Marmottant30,33 model. Figure 2 shows a schematic of these
models in the tension-strain plane for the case of isotropic
external load that is relevant to the case of contrast agent
dynamics. For strain softening materials the effective elastic
modulus, identified as the local slope of the tension-strain
curve, decreases/increases as the microbubble is isotropically
expanded/compressed, whereas the opposite is true for strain
hardening shell materials. The Marmottant model assumes a
behavior according to which the effective elastic modulus
decreases from the linear value upon application of any
amount of stress, whether that is compressive or extensive.
Below a certain radius, RB, corresponding to zero tension,
the above model assumes a buckling state for the mi-
crobubble, whereas above a certain radius, RA, rupture is
hypothesized whereby gas is exposed to the surrounding liq-
uid. Isotropic extension is achieved beyond this threshold
value for the radius simply due to gas-liquid interfacial ten-
sion, while the model does not allow for any compressive
stress on the microbubble. Based upon available experimen-
tal data, strain softening or strain hardening behavior can
account for a wide range of contrast agent behavior due to
the inherent nonlinearity and asymmetry in the shell re-
sponse that they allow during expansion and compression.
Compression only, expansion only behavior and abrupt vi-
bration onset can be addressed in this context, even though
there is still research going on in order to unequivocally
determine the mechanism behind these phenomena. Conse-
quently, the Mooney–Rivlin and Skalak laws constitute a
useful tool in studying contrast agent behavior and we em-
ploy them in the present study in order to investigate dy-
namic phenomena associated with their deformation. In ad-
dition, such models contain linear behavior as a special case
in the limit of small deformations, and can be readily ex-
tended to two and three dimensions in order to study shape
deformation and break-up. This approach is essentially an
extension of I that accounts for axisymmetric disturbances
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on the pulsating microbubble. Finally, the Marmottant model
has also built in nonlinear material behavior, as was ex-
plained above, it can also explain certain aspects of contrast
agent behavior, but it cannot easily be extended to account
for deviations from sphericity.

A typical strain energy describing a very thin sheet of an
isotropic volume incompressible rubber-like material with
strain softening behavior is the one provided by the two-
dimensional MR constitutive law,32,46

wMR =
GMR

6
��1 − b�
I2 + 2 +

1

I2 + 1
�

+ b
 I1 + 2

I2 + 1
+ I2 + 1�� �27�

in dimensional form with GMR=GS the surface elastic modu-
lus. The case with b=0 corresponds to a neo-Hookean mem-
brane, whereas as b, which ranges between 0 and 1, tends to
zero the membrane becomes softer. It should also be noted
that the 2d Mooney–Rivlin constitutive law can be obtained
from the 3d analog by allowing unrestricted area dilatation
that is compensated by progressive thinning of the mem-
brane. Thus, in the limit of small deformations Hooke’s law
is reproduced when the area dilatation modulus of a
Mooney–Rivlin shell becomes K=3GMR=Gs�1+�s� / �1−�s�.
Consequently, for a shell material with Poisson ratio
�s=0.5 the shear modulus of a Mooney–Rivlin shell GMR is
equal to that of a Hookean membrane, Gs.

One of the most widely used constitutive laws pertaining
to strain hardening membranes is the law developed by SK
�Ref. 47� in order to model the lipid bilayer structure sur-
rounding the red blood-cell,

wSK =
GSK

6
�I1

2 + 2I1 − 2I2 + CI2
2� . �28�

Parameter GSK in the above equation bears the same signifi-
cance as GMR in Eq. �27�, whereas parameter C is always
positive and controls the extent of area compressibility of the
membrane. In the case of red blood-cells, C�1 in order to
accommodate the almost incompressible nature of the mem-
brane area. Nevertheless, this is a quite general law that is
used for strain hardening membranes whether they are area
incompressible or not. In the limit of small displacements,
the area dilatation modulus of a Skalak membrane is
K=GSK�1+2C� and that of a Hookean membrane is
K=Gs�1+�s� / �1−�s�. The two moduli become identical in
this limit when the Poisson ratio �s and compressibility con-
stant C are related via �s=C / �1+C�. For a Hookean mem-
brane with Poisson’s ratio, �s=0.5 C is equal to unity and
the shear moduli GSK and Gs also become identical. On
the other hand, when �s=1 C→� and the membrane be-
comes area incompressible. When the Mooney–Rivlin and
Skalak membranes are compared, the equality of their area
dilatation modulus is required and this amounts to setting
3GMR=GSK�1+2C�. More details on the properties of MR
and SK membranes are provided in studies on flow induced
capsule deformation.32,37,48

Membrane shear viscosity can also be accounted for via
a linear Newtonian term49 that is added to the elastic stresses
and involves membrane velocity. Thus, for the case of a MR
membrane we obtain in dimensionless form

�ss
MR =

1

3�s��

�s

2 −
1

��s���2��1 + b���
2 − 1�� +

2

Res

1

�s

��s

�t
,

�29a�

���
MR =

1

3�s��

��

2 −
1

��s���2��1 + b��s
2 − 1��

+
2

Res

1

��

���

�t
, �29b�

where 1 /�s���s /�t� ,1 /������ /�t� are the first principal
components of the surface rate of strain tensor and Res is
the Reynolds number of the membrane defined as
ReS=��GsReq

3 /�S
2. In the above equation, the two-

dimensional dilatational viscosity, �s=3�3d�sh in Pa s m, is
taken to be equal to the shear viscosity of the membrane for
simplicity. This is a standard practice in the literature50,51

in the absence of a complete rheological characterization of
the membrane. A similar expression is obtained for a SK
material.

C. Constitutive equations for bending moments

As discussed in Sec. II A, the shell equilibrium formula-
tion, Eqs. �12a�, �12b�, and �13�–�15�, involves stress result-
ant forces and moments. The stress resultants arising due to
the membrane stresses are associated with strain energy and
were obtained via the appropriate constitutive law in
Sec. II B. The shearing stress resultant q� is related to the
principal components of the moment tensor, Eq. �21�, also
known as bending moments. The latter two components
along with the shearing force determine the moment equilib-
rium and consequently the state of shell bending. In classical
three dimensional thin shell theory, the moments arise by
employing the resultant moments associated with the stress
resultants around a typical shell element.15 It then turns out,
upon application of linear Hooke’s law in order to associate
stresses with displacements, that these principal moments are
linearly related to the change in curvature. The constant in-
volved in this relationship is called bending elasticity or
bending resistance kB with units N m, and denotes the mate-
rial stiffness toward bending. When the reference state is that
of a sphere, the dimensionless curvatures in the two principal
directions are ks

R=k�
R=1, while for a volume incompressible

3d material the Poisson ratio is set to �=0.5. If the shell
consists of a thin layer of such a three dimensional and iso-
tropic elastic solid of thickness �sh, then according to stan-
dard shell and plate theory,15

kB =
3G3d�sh

3

12�1 − v2�
, �30�

where G3d is the three dimensional shell shear modulus in
N /m2; as shown in I it is related to the 2d shear modulus GS

in Pa m via G3d�sh=Gs. In the case of axisymmetric defor-

012102-8 K. Tsiglifis and N. A. Pelekasis Phys. Fluids 23, 012102 �2011�

Downloaded 06 Mar 2013 to 195.251.17.167. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



mation, the bending moments are derived in dimensionless
form,

ms =
B

��

�Ks + vK��, m� =
B

�s
�K� + vKs� , �31�

based on the linear theory of bending of thin shells. Ks and
K� denote the bending measures of strain

Ks 
 �sks − ks
R, K� 
 ��k� − k�

R. �32�

ks
R, k�

R are the dimensionless curvatures in the principal
directions of the reference spherical state in which the mem-
brane is free of bending moments and B=kB /GSReq

2 is a di-
mensionless bending elasticity with kB the scalar bending
modulus in �N m�. The latter is not an independent parameter
in classical shell theory and is evaluated via Eq. �30�. Thus,
the ratio between parameter B values of a strain softening
and strain hardening shell with the same area dilatation
modulus, equilibrium radius, and bending stiffness is
BMR /BSK=GSK /GMR=3 / �1+2C�. Finally, the Poisson ratio �
is only needed for estimating the bending moments and is set
to �s=0.5 for MR shells and �s= =C / �1+C� for SK shells. In
this fashion the bending moments of the MR or SK shell
under investigation are estimated via expressions pertaining
to Hookean shells that are equivalent in the linear limit and
are characterized by the same area dilatation and shear
modulus as the original MR or SK shell.

When microbubbles that are encapsulated by inherently
two-dimensional membranes are considered, such as 2d net-
works of polymers or lipid mono- or bilayers, isotropy is lost
and the material exhibits two different elasticities, the mem-
brane elasticity Gs along the interface and the bending elas-
ticity or bending resistance kB in the transverse direction. In
this case, kB depends on the strain and curvature invariants,
in general, but for the purposes of the present study and in
the interest of simplicity it is treated as an independent
physical constant.39,40 Constitutive equations for bending
moments have been derived by previous authors working
with similar 2d interfaces in curvilinear coordinates.39,52 One
common assumption also adopted in the present study is that
the bending moments have a negligible effect on the sym-
metric part of the elastic tensions given in Eq. �22�. This is
correct for small bending deformations, i.e., small changes of
the Cartesian curvature tensor B, because then the bending
moment tensor m is symmetric and the antisymmetric part of
� vanishes; see also the analysis presented elsewhere.40 In the
case of axisymmetric interfaces whose bending moments de-
pend on the solid angles subtended by molecular networks,
as is normally the case with the coatings of contrast agents,
an analogy is invoked with the bending measures of strain
provided by classical shell theory in the form of Eqs. �31�
and �32�. This completes the formulation for the mechanics
of the shell-liquid interface. It should also be stressed that by
introducing the above bending measure of strain we implic-
itly define the dimensionless bending energy as

wB = B�km − km
R�2, �33�

also in accordance with classical theory of shell bending,
with km denoting the mean curvature.

The approach outlined in Secs. II A–II C affords a more
intuitive understanding on the dynamics of contrast agents.
In the case of free bubbles the surface energy per unit area
involves surface tension, i.e., wf =1 /We in dimensionless
form, and is associated with minimization of the mi-
crobubble area. In the case of elastic shells the tensions that
develop are nonisotropic, hence the need to consider stretch-
ing and bending energy. Furthermore, in the present study
there is the additional feature of anisotropic stiffness regard-
ing stretching and bending as this is reflected in the two
independent stiffness parameters, namely, area dilatation
modulus, or membrane elasticity and bending resistance, or
bending elasticity. Consequently, mechanical energy is stored
in the shell in the form of membrane stretching �or compres-
sion� and bending in the two principal directions. Depending
on the material stiffness corresponding to each one of these
two processes, the contrast agent will remain spherical or
deform in an effort to optimally distribute its energy, see also
the discussion in Sec. IV.

III. STABILITY ANALYSIS FOR SMALL AXISYMMETRIC
DISTURBANCES

We are interested in examining the stability to axisym-
metric disturbances of a contrast agent microbubble perform-
ing spherosymmetric pulsations in response to an acoustic
excitation of the form shown in Eq. �1�. The effect of the
shell material on the radial motion of such a microbubble
was extensively studied in I and it was seen that after an
initial transient the microbubble performs steady pulsations
characterized by the forcing frequency. The properties of the
scattered pressure were analyzed and the dependence of the
backscatter coefficient was obtained as a function of the am-
plitude and frequency of the disturbance and the viscoelastic
properties of the material. This arrangement, as described
and solved in I, constitutes the base solution onto which
axisymmetric disturbances are imposed. We consider a small
initial deformation of the microbubble interface,

rd = R�t� + �w��,t�, �d = � + �u��,t�/R�t� + O��2� ,

�34�

with rd, �d the instantaneous radial and azimuthal coordi-
nates of the interfacial particles, R�t� the time series of the
radial position of the pulsating bubble, ��1 a measure of the
size of the shape disturbance taken to be very small, and
w�� , t�, u�� , t� the dimensionless displacements in the radial
and azimuthal directions, respectively; radial displacements
toward the host fluid are taken to be positive. In the follow-
ing, �r ,�� denote the radial and azimuthal coordinates in the
Eulerian spherical coordinate system based on the
spherosymmetrically pulsating bubble. It should be stressed
that while � has to be small in the context of the present
study, �, the amplitude of the acoustic disturbance, can be
arbitrarily large. The basic assumption of the ensuing stabil-
ity analysis pertains to the requirement for very small devia-
tions from sphericity in the microbubble pulsation and the
resulting flow field. In this context, we seek an asymptotic
solution for the velocity and pressure in the host fluid, in the
limit as �→0, of the form
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V� = V� 0 + �V� 1 + O��2� ,

�35�
P = P0 + �P1 + O��2� .

Substituting the above equations in the inviscid equations of
motion, we obtain

�� · V� 0 = 0, �36a�

�� · V� 1 = 0, �36b�

�V� 0

�t
+ V� 0 · �� V� 0 = − �� P0, �37a�

�V� 1

�t
+ V� 0 · �� V� 1 + V� 1 · �� V� 0 = − �� P1 �37b�

for the O��0� and O��1� problems, respectively.
Setting F
rd�� , t�− �R�t�+�w�� , t�+O��2�� the normal

component of the kinematic condition in Eulerian represen-
tation reads as

V� · n� = −
1

��F�
�F

�t
. �38�

Upon introducing Eq. �35� in Eq. �38� and using domain
perturbation10,53 in order to obtain an expansion of the radial
velocity that is valid on the deforming interface,

Vr�r=rd
= Vr�r=R + 	 �Vr

�r
	

r=R

�w + O��2� , �39�

we recover the radial components of the kinematic condi-
tions for the O��0� and O��1� problems, respectively,

Vr
0�r=R�t� =

dR

dt
, �40a�

�w

�t
= Vr

1�r=R + 	 �Vr
0

�r
	

r=R

w −
1

r

�w

��
V�

0�r=R. �40b�

It should be emphasized that we do not have to satisfy the
continuity of the tangential component of the interfacial ve-
locity since we operate in the potential flow regime on the
liquid side.

On applying expansion �34� in the normal force balance
on the deformed interface, Eq. �12a�, containing the different
contributions on the viscoelastic stresses, and taking into ac-
count that

P�r=rd
= P�r=R + 	 �P

�r
	

r=R

�w + O��2� , �41�

�s = R + �
�u

��
+ �w, �� = R + �u cot��� + �w , �42�

we obtain the normal force balance for the O��0� problem,

− Pover 
 PG
0 − P0�r=R =

2km
0

We
+ 
FN

0 , �43�

with km
0 = ��� s ·n��0=1 /R denoting the average curvature of the

spherosymmetrically pulsating bubble. Similarly, the O���
component of the normal force balance is obtained,

− P1�r=R − 	 �P0

�r
	

r=R

w =
2km

1

We
+ 
Fn

1, �44�

with km
1 =−�H�w�+2w� /2 /R2 �see the Appendix� signifying

the O��� correction to the average curvature of the mi-
crobubble in the deformed state. Finally, the tangential force
balance, Eq. �12b�, only participates in the O��� problem
because it has no contribution to O��0�,

�
Ft
1 + O��2� = 0. �45�

A. O„�0
… problem

To order �0 there are no asymmetries involved in the
problem and the microbubble performs radial oscillations in
response to the acoustic disturbance in the far field. Owing to
spherosymmetry, bending moments are not present and
consequently only membrane elasticity Gs and viscosity
�s affect the dynamics. The flow field is determined by
the well-known velocity potential for radial symmetry,

Φ0=−�ṘR2� /r, and the pressure in the host fluid, upon appli-
cation of Eq. �37a�, assumes the form

P0�r,t� = P��t� + �2RṘ2 + R2R̈

r
−

R4Ṙ2

2r4 �, R 
 r 
 � .

�46�

Introduction of the above equation in Eq. �43� that is evalu-
ated at r=R, where the viscoelastic force depends on the
membrane constitutive law in the manner described in
Sec. II, furnishes the instantaneous radial position,

RR̈ +
3

2
Ṙ2 = PG�t� −

2km
0

We
− 
Fn

0 − P��t� , �47�

with PG�t� provided by Eq. �5�. The above equation is a
variation of the Rayleigh–Plesset equation that collapses on
the equivalent equations provided in I for MR and SK mem-
branes when the host fluid viscosity and compressibility are
neglected. This is a valid assumption since, as was men-
tioned above, in most cases membrane viscosity is the domi-
nant damping mechanism. When a more accurate prediction
is required for the time series of the microbubble radius for
the O��� terms of the stability analysis to be obtained, then
the more general spherosymmetric model described in I can
be employed in place of Eq. �47�. Thus, the dimensionless
parameters that determine the radial dynamics in the present
study are the characteristics of the acoustic disturbance
through � and � f, the viscoelastic properties of the shell
through ReS and b or C and to a lesser extent We. When the
effect of prestress is of interest, then the initial conditions on
the microbubble radius are set to
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R�t = 0� = R0 � 1, Ṙ�t = 0� = 0. �48�

R0�1 signifies an initial balance for which the principal ex-
tension ratios differ from unity, in which case elastic stresses
develop on the spherical shell.

B. O„�1
… problem

Combination of irrotationality and continuity to O���
satisfies the Laplacian with the introduction of the velocity
potential, V� 1=�Φ1. The Laplacian, along with momentum
equation �37b�, the normal force balance, Eq. �44�, and the
tangential force balance, Eq. �45�, constitutes a linear system
in Φ1, P1, w, and �; u
�� /��. Based on the solution of the
Laplacian in spherical coordinates that satisfy quiescent flow
conditions in the far field, Eq. �6�, the velocity potential in
the host fluid assumes the form

Φ1 = �
n=1

�
Φn�t�

rn�1 Pn�θ�, �49�

while substituting the O��0� and O��1� solutions for the ve-
locity potential in Eq. �37b� gives

P1 = − �
n=1

�

Pn���
 Φ̇n

rn+1 −
Φn�n + 1�

rn+4 ṘR2� . �50�

Next, setting

w = �
n=0

�

wn�t�Pn���, � = �
n=0

�

�n�t�Pn��� �51�

and evaluating the kinematic boundary condition, Eq. �40b�,
at the interface r=R�t� provides a relation between the coef-
ficients of the velocity potential Φn�t� and the radial displace-
ment wn�t� to O���. Finally, substituting in the linearized
normal and tangential force balances, Eqs. �44� and �45�, we
obtain the following initial value problems for the Legendre
coefficients wn�t�, �n�t�:

ẅn +
3Ṙ

R
ẇn + � �1 − n�R̈

R
+

�n + 1��n − 1��n + 2�
We R3 �wn

+
n + 1

R

Fn

1�ẇn,�̇n,wn,�n,B,Res,R,Ṙ,n� = 0, �52�


Ft
1�ẇn,�̇n,wn,�n,B,Res,R,Ṙ,n� = 0 �53�

for given initial deviation from sphericity, wn�t=0� ,�n�t=0�,
and radial history R�t� of the pulsating bubble provided by
Eq. �47� and the appropriate initial conditions, Eq. �48�, in R

and Ṙ; the actual form of elastic tensions involved in Eqs.
�52� and �53� is provided in the Appendix. In order to estab-
lish the parameter range beyond which the pulsating bubble
will exhibit deviations from sphericity, we can solve the
above initial value problem for a number of Legendre modes
coupled with the time variation of the microbubble radius
provided by Eqs. �47� and �48�. For time integration the
fourth order accurate Runge–Kutta method is used with a

constant time step, small enough to capture fast growth of
unstable modes. If �wn�t�� and ��n�t�� eventually start growing
with time then the nth mode is considered to be unstable.
However, this can be a costly procedure since certain types
of instabilities grow over an extended period of time. For
example, it is known from the stability of free bubbles12 that
growth of shape modes via subharmonic or harmonic reso-
nance takes place over many periods of volume pulsations.
In Sec. III C, we present a more systematic numerical ap-
proach for investigating the existence of this type of insta-
bilities. Time integration was mainly used in the present
study in order to capture what we call dynamic buckling
which evolves over a short period of time and is of explosive
nature.

C. Numerical investigation of parametric instabilities
due to resonance

As was shown in I in the context of spherosymmetry,
after a short transient the microbubble performs radial peri-
odic pulsations with a period that is determined by the exter-
nal forcing, T=2� /� f. Consequently, Eqs. �52� and �53� con-
stitute a set of ordinary differential equations �ODEs� with
periodic coefficients. In the limit of very small amplitude of
the acoustic disturbance, �→0, or, equivalently, of small am-
plitude of the radial position, the stability of the above equa-
tion set is determined by transforming them to two Mathieu
equations53 with known stability criteria. Since, however, our
study is intended at capturing shape deformations even at
large sound amplitudes, ��1, a more general approach is
adopted which involves calculation of the eigenvalues of the
Floquet transition or monodromy matrix.12,54 Recasting Eqs.
�52� and �53� in the form of three linear first order ODEs,

y�̇ = F�t�y�, y� 
 �wn,ẇn,�n� , �54�

the monodromy matrix M is calculated by solving the fol-
lowing initial value matrix problem:43,54

M = ��t = T�: �̇ = F�t��, ��0� = I . �55�

Adopting a fully implicit integration scheme for the above
equation over N time steps, we get

�n+1 = �n�I + 
t · Fn+1� = �n · Gn+1, �56�

�0 = ��t = 0� = I → M = ��t = �� = �N = G1 · G2
¯ GN.

�57�

In this fashion, matrix M is evaluated at the end of one
period T as the product of the instantaneous matrices Gn. Its

eigenvalues, � j, j=1,2 ,3, bear significance on the stability
of the forced radial pulsating motion; one of these eigenval-
ues is unity by construction of the monodromy matrix. Ra-
dial pulsations are stable if �� j��1 for j=1,2, whereas they
are unstable if �� j��1 for some j.43 In fact, a number of
possible instabilities can be observed, of which the most rel-
evant to our study arises in the following manner: if
Im�� j�=0 with Re�� j��−1 then the emerging solution y��t�
is periodic with twice the period of the forcing �subharmonic
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resonance�, whereas if Im�� j�=0 and Re�� j��1 then the
emerging solution y��t� is periodic with the same period as, or
integer multiples of, the forcing �harmonic resonance�. In all
other cases, the evolving solution is quasiperiodic with two
characteristic frequencies, that of the forcing and that of the
bifurcating solution, leading to a toroidal structure in the
phase space.43 In the context of the present study, the above
criteria are met when the amplitude � of the acoustic distur-
bance exceeds a certain threshold that depends on the spe-
cific eigenmode in question. A special case of this behavior is
met when the forcing frequency is a rational multiple of the
eigenfrequency of one of the shape modes, in which case
additional possibilities arise for controlling the dynamics of
the microbubble. These issues as well as their significance in
constructing phase diagrams of contrast agents will be dis-
cussed in more details in Sec. IV D.

Based on the data available in the literature, we employ
a range of values for the viscoelastic properties of the shell
in the calculations presented in Sec. IV. More
specifically, in order to set the relevant dimensionless
quantities, we take the equilibrium radius in the range
1 �m
Req
3 �m, the 2d shear modulus in the range
0.1 N /m
Gs
1 N /m, the surface shell viscosity in the
range 0.5�10−9 kg /s
�s
15�10−9 kg /s, and the sur-
face bending elasticity on the order of 1�10−13 N m
kB


2�10−13 N m. For estimating the dimensionless param-
eters pertaining to strain softening shells Gs=GMR, whereas
for strain hardening shells Gs=GSK. In order to compare the
behavior of strain softening and strain hardening shells, we
set GSK=3GMR / �1+2C�. Finally, the Poisson ratio � is
only needed for estimating the bending moments and is set
to �s=0.5 for MR shells and �s= =C / �1+C� for SK
shells throughout this study. Consequently, C is the only
arbitrary parameter for strain hardening shells with GSK

and �s specified in the manner explained above for the pur-
pose of comparison with strain softening shells and
BMR /BSK=GSK /GMR=3 / �2C+1�.

In most of the figures Req=1.5 �m, Gs=0.52 N /m,
�s=3.96�10−9 kg /s, b=0, and kB=1.1�10−13 N m,
whereas in Figs. 11�b� and 11�d� Gs=0.18 N /m, kB=1.3
�10−13 N m, and b=1, with the rest of the parameters re-
maining the same; the polytropic constant of the ideal
gas filling the microbubbles is invariably set to �=1.07.
Viscous damping and acoustic damping in the host fluid are
not accounted for in the results to be presented hereinafter
except for the phase diagrams shown in Fig. 16, where
the physical properties of water at atmospheric pressure
are used; Pst� =101 325 Pa, �=998 kg /m3, �=0.001 Pa s,
C=1540 m /s. The particular choice of shell parameters used
for the construction of phase diagrams in Fig. 16 is discussed
in Sec. IV D. An indicative value of surface tension was
used, 	=0.051 N /m, for air/water contact through an elastic
coating, which is smaller than the actual interfacial tension
for an air/water interface, 	=0.072 N /m. An acoustic dis-
turbance of the form shown in Eq. �1� was applied in the
stability studies presented in the following, except for the
slow compression tests shown in Sec. IV A where the sine
function was employed as initial acoustic disturbance. In all
cases, an initial disturbance on the order of 10−9 was used for

the axisymmetric modes whose stability was numerically
tested. Finally, it should be stressed that in all subsequent
figures dimensionless time is rescaled as t̄= t�� f�, whereas all
variables plotted as y coordinates in subsequent graphs are
scaled in the way described in Sec. II. Hence, one period of
volume pulsations of the microbubble corresponds to t̄=2�.
In the following, overbars are dropped from dimensionless
time for convenience.

IV. RESULTS AND DISCUSSION

A. Static buckling

As a first step, the case of static stability of an encapsu-
lated spherical bubble was examined. In this case, loss of
sphericity under an external compressive load is identified as
buckling. This is a static effect that will not necessarily mani-
fest itself in the dynamic response of a contrast agent to an
acoustic disturbance. As will be seen in the following, this
case becomes relevant only when the forcing frequency of
the acoustic excitation is much smaller than the eigenfre-
quency of volume pulsations of the microbubble, a situation
also known in experimental studies as slow compression.30

In this context, we want to establish the critical overpressure
exerted on the microbubble, for given equilibrium radius and
viscoelastic properties of the shell, beyond which buckling
takes place. This is essentially a threshold in external over-
pressure beyond which the spherosymmetric configuration at
static equilibrium requires a higher energy content in com-
parison with the axisymmetric, or buckled, configuration.
The former configuration consists solely of strain energy
whereas the latter, i.e., the buckled configuration, allows for
strain as well as bending energy in such a way as to mini-
mize the total elastic energy of the shell.

As a first step, we will recover the well-known result
from the theory of shells of revolution,42 namely, that the
overpressure threshold for a spherical shell to undergo axi-
symmetric buckling is

Pcr� =
2�3G3d�

�3�1 − v2�

 �sh

Req
�2

. �58�

It should be noted that it is valid for small displacements and
for isotropic shells where the bending elasticity, or bending
resistance, kB is not an independent parameter and is defined
through shear modulus G3d via Eq. �30�. Then, Eq. �58� reads
in dimensionless form as

Pover = Pcr = 4�3B . �59�

If we set Ṙ= R̈=0 and neglect shell damping, the only re-
maining parameters of the problem are Pover, B, and �. Then,
Eqs. �12a� and �12b� provide the shape of the compressed
sphere, R ,�=R ,��Pcr�, at equilibrium subject to a uniform
external overpressure Pover. For small radial displacements,
Pcr is a small quantity and the critical radius at compression
is R�1− Pcr /4. Then, letting

wn�t� = �ne�nt, �n�t� = �ne�nt �60�

and substituting in Eqs. �52� and �53�, we obtain an eigen-
value problem of the form
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A��n;R�Pcr�,B,�,n� · ��n

�n
� = 0. �61�

In order for the above set of equations to have a nontrivial
solution, its determinant must vanish,

det�A��n;R�Pcr�,B,�,n�� = 0, �62�

which provides the eigenvalues of the problem. Requiring
that �n be zero for criticality, we obtain a condition on Pcr as
a function of B, �, and n. Taking the minimum value of Pcr

for criticality, with varying n, we recover Eq. �59�. The n
value for which this minimum takes place provides the
eigenmode that will dominate the postbuckling state of the
shell. The same procedure can be repeated for the general
case where B is an independent parameter, including viscous
effects for completeness. Then the stability criterion for
buckling is

det�A��n;R�Pcr�,B,ReS �,n�� = 0. �63�

The above condition provides three roots for �n, at least one
of which is real. If their real part is negative for given n, then
the microbubble is stable with respect to axisymmetric dis-
turbances characterized by the nth eigenmode. The imagi-
nary part of the complex pair of eigenvalues, if any, provides
a cyclic oscillation frequency for the nth mode.

Figure 4 provides the critical overpressure as a function
of B for shell material obeying Hooke’s law, �s=0.5 with
Gs=GMR, and for a strain softening, b=0, and a strain hard-
ening material, C=1, hence GMR=GSK. Res does not affect
the result significantly, at least for the range of shell viscosi-
ties tested. It can be gleaned from the above figure that all
three cases collapse onto Eq. �59� for small B values, i.e.,
small bending elasticity. As B increases, the critical external
load increases and the spherosymmetric configuration at
critical conditions exhibits large displacements from the
stress free condition. Equivalently, it can be easily seen that

the buckling radius decreases with increasing bending resis-
tance of the shell. Consequently, larger deviations from the
small displacement theory are obtained and the small dis-
placement result shown in Eq. �59� loses validity.

In fact, strain softening materials become harder at com-
pression while the opposite is true for strain hardening ones.
Hence, in the former/latter case positive/negative deviations
are registered for the shear modulus Gs with increasing com-
pression, i.e., 
� /��0, as compared with the value ob-
tained for small displacements from Fig. 2. Consequently,
the spherosymmetric configuration at compression will ex-
hibit a much lower microbubble radius, or equivalently
larger deviation from the stress free equilibrium radius, for
the strain hardening shell as compared to those following
Hooke’s law. Therefore, the strain energy at compression
will be much larger for strain hardening shells and bending
arises as an alternative leading to a lower total energy con-
figuration. For given bending resistance, this situation will
emerge at a larger overpressure when strain softening shells
are considered. The latter exhibit at the compressed state
smaller deviations from the stress free equilibrium, in com-
parison with shells following Hooke’s law. Thus, bending
will become necessary for the minimization of the total elas-
tic energy at larger overpressures. For both types of shells,
n=2 dominates the postbuckling state for almost the
entire range of B values, B 0.03. Eigenmodes correspond-
ing to n=3, 4, and 5 dominate the small B values regime,
0.002
B�0.03, whereas high modes, n 6,7, etc., domi-
nate the very small B values regime, B�0.002.

The above analysis provides a convenient means for es-
timating kB for a contrast agent whose shear modulus and
shell viscosity have been obtained from acoustic scattering
experiments at low sound amplitude, and the softness of the
membrane has been determined at larger amplitudes �param-
eter b or C for strain softening or strain hardening mem-
branes� before significant shape deformation takes place.
Then, the critical overpressure for which the shell buckles in
a slow compression experiment can give B from a curve like
the ones shown in Fig. 4, from which kB is recovered once
the stress free equilibrium radius Req is known. The pressure
excitation in a slow compression experiment is better simu-
lated by a disturbance P�� = Pst�1+� sin�� f�t��� whose forcing
frequency � f� is much smaller than the resonance frequency
for volume pulsations of the microbubble �0�. In the limit as
� f tends to zero and after the initial transient has elapsed, the
step change in the static pressure of the host fluid
P�� = Pst�1+�� is simulated and the static buckling behavior is
exactly recovered. Figures 5�a� and 5�c� show the evolution
of w2 as a function of time before and after the onset of
unstable P2 growth, amplitude � is set to 10 and 12.2, respec-
tively, when � f is a small fraction of the eigenfrequency
for volume pulsations, �0. The radial motion of the mi-
crobubble, coated with a strain softening shell and oscillating
in response to an acoustic disturbance, is also shown in the
graphs. It exhibits a strong expansion only type behavior due
to the strain softening nature of the shell. The radial motion
is not very different for the two amplitudes tested in Figs.
5�a� and 5�c�, hence it is not fully shown in Fig. 5�c�. In the
latter case, P2 is the most unstable of a number of unstable
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FIG. 4. Dimensionless critical overpressure for static buckling to take place
as a function of dimensionless bending resistance for a microbubble obeying
a strain softening, b=0, a strain hardening, C=1, and Hooke’s law,
B=BMR=BSK.
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modes revealed by time integration of their equivalent am-
plitude equations, Eqs. �52� and �53�, along with the modi-
fied Rayleigh–Plesset equation �47�. Unstable mode excita-
tion is totally absent in Fig. 5�a� whereas it occurs during the
compressive phase of volume pulsations in Fig. 5�c� and is
not a matter of resonance. Rather, it is a result of buckling
because the threshold in overpressure for growth of the most
unstable mode is very close to the prediction of static analy-
sis. Figures 5�b� and 5�d� show the evolution of the overpres-
sure defined in Eq. �43�. The prediction from the radial so-
lution and the prediction of static analysis for the critical
overpressure are both shown. The dynamic overpressure in
Fig. 5�d� is marginally above the statically predicted value
from Fig. 4, hence P2 growth is captured in Fig. 5�c�.
It should also be stressed that, as can be gleaned from

Figs. 5�c� and 5�d�, P2 growth is quenched after the compres-
sive phase is over. It will reappear at the same phase during
subsequent pulsations; however, the amplitude of P2 after the
first cycle is already comparable to the instantaneous bubble
radius and is expected to overwhelm the bubble. A similar
behavior is exhibited for strain hardening shells subject to
the same slow compression load, albeit for a smaller thresh-
old value in sound amplitude, �=10.5, since they are me-
chanically prone to exhibit compression only type behavior
due to the fact that they become softer when they are com-
pressed, Fig. 6�a�. Again, P2 growth is registered in Fig. 6�a�
during the compressive phase of the pulsation when the over-
pressure marginally overtakes the statically predicted value
for a strain hardening shell with C=3 and B=0.094. Strain
softening shells exhibit weaker compression, Fig. 5�a� versus
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FIG. 5. Time evolution of the radial position, the amplitude of the most unstable second Legendre mode w2, and the overpressure exerted on the shell due to
its radial pulsation in response to an external acoustic disturbance characterized by � f�=2�0.1 MHz and amplitude ��a� and �b�� �=10 and ��c� and �d��
�=12.2; b=0, B=0.094, ReS=10.57, �0�=2�7.2 MHz, and Pst=0.2923 for a strain softening shell.
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Fig. 6�a�, thus forcing smaller area changes which requires a
larger sound amplitude, �=12.2, for static buckling to take
place.

It should be stressed that the above methodology is valid
provided the classic limit for static buckling is indeed valid
in such an experiment. Experiments with metal shells indi-
cate that the first buckling mode is indeed axisymmetric but
the external load threshold can be much lower than the clas-
sic one. This effect is attributed by analytical and numerical
studies55,56 to imperfections in the shape of the shell which
are concentrated in a certain sector of its interface while the
rest of it remains mostly spherical. However, such shapes are
normally a result of problematic manufacturing that gener-
ates nonuniform, prestressed shells that are quite large. Such
shells are not expected to arise in the case of micron sized

coated bubbles for which, as will be seen in the following,
stability analysis predicts that deviations from sphericity re-
quire quite large disturbances.

B. Resonance frequencies and subharmonic-
harmonic excitation

Besides isotropic compression and buckling, a mi-
crobubble can also deform and exhibit shape modes via har-
monic excitation, in a manner similar with free bubbles. For
this mechanism to be better understood, the eigenfrequencies
of the shape modes of the microbubble should be available.
They can be calculated by resorting to Eqs. �52� and �53�,
setting R=1, Ṙ= R̈=0, and substituting Eq. �60� for wn and
�n. Thus, the following eigenvalue problem is obtained, e.g.,
for a MR membrane:

��n
2 +

4�n

Res
+

�n + 1��n − 1��n + 2�
We

+ Bn�n + 1��n�n + 1� − �1 − ��� −
2�nn�n + 1�

Res
− 2n�n + 1�2 − Bn�n + 1���1 − �� − n�n + 1��

2�n

Res
− 2 + B��1 − �� + n�n + 1�� −

2 + 4n�n + 1�
3

−
2�n�1 + 4n�n + 1��

Res
− B��1 − �� + n�n + 1�� ��an

bn
� = �0

0
� . �64�

In this fashion, the evaluation of the eigenfrequencies corre-
sponding to the shape modes is decoupled from the pulsating
motion of the microbubble and is strictly valid in the linear
regime of small deviations from sphericity. The eigenfre-
quencies are next obtained by fulfilling the requirement that
the determinant of the matrix in Eq. �64� vanish. Figures 7�a�
and 7�b� show the eigenfrequencies of the first four modes as
a function of the dimensionless bending elasticity B for a
MR and a SK membrane. The curves shown in Fig. 7�b� are
obtained for C=5, since the case for C=1 is identical with a
strain softening membrane for small displacements. It should
be stressed that for strain hardening shells with the same area
dilatation modulus K as strain softening ones it holds that
K=GSK�1+2C�=3GMR. Therefore, the former exhibit
smaller surface Young modulus, GSK�GMR, when C�1,
i.e., as they become more area incompressible.32 Conse-
quently, care should be taken when eigenfrequencies are
compared, based on graphs like the ones shown in Figs. 7�a�
and 7�b�, for membranes exhibiting different elastic behav-
ior. Thus, in Fig. 7�b� as well as in all cases examined herein
with strain hardening shells GSK=3GMR / �1+2C�. Shell vis-
cosity does not significantly affect these trends, as expected.
For known contrast agents, the dimensional equivalents of
the values plotted in Fig. 7 lie mainly in the range of ultra-
sound, 1–10 MHz.

Upon close examination, Fig. 7 reveals a square root
dependence of all the dimensionless eigenfrequencies with
respect to the dimensionless bending stiffness B. In addition,
both types of material exhibit more or less the same eigen-
frequencies for all shape modes. This is a combined result of
the facts that these frequencies depend on the bending stiff-
ness kB, which is the same in both cases, and that the small

deviation from the basic spherical configuration required for
their derivation mitigates any differences in the shell material
response.

In fact, reverting to dimensional quantities reveals that

�n � �B →
�n�

�Gs/�Req
3

�
kB

1/2

�GsReq
2

→ �n� ��kB/Req
2

�Req
3 .

�65�

The final relationship in the above equation is in the form of
the classic finding from structural dynamics associating the
eigenfrequency of shape modes with the square root of the
stiffness divided by the mass of the structure. In the present
study, the latter is the displaced mass of the microbubble
�Req

3 , whereas bending resistance kB controls the stiffness of
the contrast agent as far as shape deformations are con-
cerned. Furthermore, the eigenfrequencies tend to increase
with increasing mode number, also a typical result from
structure and bubble dynamics.

Once the eigenfrequencies of shape modes along with
the eigenfrequency for volume pulsations of a specific con-
trast agent are known, its dynamic response to acoustic dis-
turbances can be investigated as a function of the parameters
characterizing its size and physical properties as well as the
attributes of the acoustic excitation. To this end, the second
eigenmode �2 can be targeted by performing a frequency/
amplitude sweep in order to excite P2 through subharmonic
or harmonic resonance. Thus, utilizing the amplitude of the
acoustic disturbance as the operating parameter, for given
forcing frequency and microbubble properties, the threshold
for P2 excitation can be obtained by evaluating the eigenval-
ues of the monodromy matrix. The case of a strain softening
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membrane with the same natural parameters as in Fig. 5 and
forcing frequency such that �0��2�0.6� f is first exam-
ined. Figures 8�a�–8�c� show the evolution of radial position
and w2 with time when the sound amplitude � assumes pro-
gressively larger values, indicating subharmonic growth of
P2 with a period that is double that of the forcing, beyond a
certain amplitude. In addition, the number of periods re-
quired for w2 to reach a certain amplitude decreases with
increasing sound amplitude. The most dangerous Floquet
multiplier, as obtained via the eigenvalues of the monodromy
matrix, is also provided indicating crossing of the unit circle
along the negative real axis with increasing �. Figure 8�d�
shows the time variation of the overpressure felt by the in-
terface, as predicted by the solution of the spherosymmetric
model at the threshold amplitude � for unstable growth of P2.
It illustrates that even at its maximum it falls well below the
critical overpressure needed for static buckling for the same
dimensionless bending elasticity B and the same geometric
and viscoelastic properties of the microbubble. Upon close
examination of the graphs indicating radial pulsation and

growth of w2, it is revealed that the extrema of the w2 oscil-
lations, minima or maxima, are almost in phase with the
minima in the radial position of the microbubble. This signi-
fies the importance of the compressive phase in the radial
pulsation for energy transfer between the breathing mode and
the emerging eigenmode. This effect is not as abrupt as in the
case of static buckling; however, it systematically occurs
over a number of periods of the radial motion, and for the
appropriate value of the sound amplitude it is enough to
overturn the dynamics in favor of the shape mode. This pro-
cess is accentuated by the particular resonance � f �2�2,
which is satisfied by the geometric and viscoelastic charac-
teristics of the shell under examination in Fig. 8. In this
fashion, resonance allows a transition to a deformed shape
for a smaller value of the overpressure in comparison with
static buckling.

Figures 9�a�–9�c� repeat the above test when the forcing
frequency � f 
�0, in which case harmonic resonance is ob-
served. This entails growth of P2 with the frequency of the
forcing � f beyond an amplitude threshold, as verified by the
eigenvalues of the monodromy matrix which cross the unit
circle along the positive real axis. Again, the maximum over-
pressure at the amplitude threshold lies below the critical
value predicted for static buckling to occur, Fig. 9�d�. In this
case, nonlinearity decreases the resonance frequency for vol-
ume pulsations of the interrogated contrast agent31 until it
hits the forcing frequency, in which case nonlinear resonance
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is achieved. Then strong radial oscillations take place and,
for the proper sound amplitude, energy transfer to P2 via
harmonic resonance and growth of this particular mode is
instigated. Strain hardening shells exhibit an increase of
resonance frequency with nonlinearity31 and consequently
cannot give rise to nonlinear resonance. As a result, such
shells are lagging in the evolution of shape modes in com-
parison with strain softening ones, at least when insonated
below resonance, � f 
�0. This effect will become evident in
the construction of phase diagrams to be presented in
Sec. IV D.

In order to stress the importance of the compression
phase in parametric excitation, we repeated the test shown in
Fig. 8 with a strain hardening shell characterized by a hard-
ness parameter C=3. Figure 10 illustrates the microbubble

response for a sound amplitude �=5, in which case intense
growth of w2 is obtained, Fig. 10�a�. Upon inspection of the
evolution of the radial position, it is observed that the ex-
trema of w2 are slightly displaced to the right with respect to
the minima of the radial position. In fact, the latter exhibit an
asymmetry in favor of compression as expected due to the
mechanics ascribed to strain hardening shells. As a result
growth of w2, which is also in a near resonance situation,
� f �2�2 is favored during this phase of the radial motion,
hence the smaller threshold in sound amplitude for growth of
w2 in comparison with a strain softening shell.

As will be seen in the following, as well as in Sec. IV D,
monitoring the critical sound amplitude needed for the onset
of parametric mode excitation can also be used in order to
estimate bending elasticity, for given dilatation modulus and
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FIG. 8. Time evolution of the amplitude of the most unstable second Legendre mode w2 in response to an external acoustic disturbance characterized by
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shell viscosity and for a contrast agent of specific equilib-
rium radius, that is insonated at a certain frequency. To this
end, a parametric study was conducted of the dynamic re-
sponse of a microbubble that is coated by a strain softening
shell, in the phase space defined by the forcing frequency
and amplitude. A similar study can be conducted for a strain
hardening shell providing a similar response pattern. As the
forcing frequency was varied above and below �0, the mini-
mum amplitude for the onset of P2 growth was registered
along with the evolution of the most dangerous Floquet mul-
tiplier. In this manner, the dynamic response of two different
microbubbles with b=0 and 1 and B�0.1 and 0.32, respec-
tively, was registered. When � f is in the neighborhood of �0,

P2 growth via harmonic resonance prevails, as illustrated in
Fig. 11. In fact, the amplitude threshold acquires its global
minimum in this region when � f is slightly below �0, as a
result of the large amplitude and the effect of increased in-
ertia on the microbubble response. This type of measurement
can also be used for estimating the membrane elasticity GS of
the shell. Away from this region, subharmonic growth of P2

was observed in the manner shown in Fig. 8. Finally, an
important finding which may bear significance in an experi-
mental protocol intended in estimating kB from acoustic mea-
surements is that a local minimum in the amplitude threshold
for P2 growth is detected in the vicinity of � f /2=�2 in all
cases examined in Fig. 11.
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FIG. 9. Time evolution of the amplitude of the most unstable second Legendre mode w2 in response to an external acoustic disturbance characterized by
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�=0.9; a strain softening shell is used.

012102-18 K. Tsiglifis and N. A. Pelekasis Phys. Fluids 23, 012102 �2011�

Downloaded 06 Mar 2013 to 195.251.17.167. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



Clearly, then, the amount of detuning with respect to the
primary � f =�0 and subharmonic � f =2�2 resonances plays a
central role in the microbubble dynamics. The same conclu-
sion was reached for the onset of shape oscillations in free
bubbles.11 In particular, it was shown for the case where the
volume and shape modes are in a two to one resonance, and
the amplitude f of radial pulsation as well as viscous effects
in the host liquid is small, that the amplitude threshold for P2

growth is

f �
2

�4n − 1��n
�2�2n + 1��n + 2�

�2�

R0	

+ ��v − 2�n�2�1/2
,

�66�
�n = ��n − 1��n + 1��n + 2� .

�v signifies the frequency of volume pulsation and can be
equal to the forcing frequency � f or to the eigenfrequency
for volume pulsations �0. Both �v and �n were made dimen-

sionless via �	 / ��R0
3� while the amplitude f of the pulsation

is made dimensionless via the bubble radius R. Thus, for a
free bubble based on a frequency/amplitude sweep, the am-
plitude threshold for the onset of shape oscillations due to
growth of a certain mode n acquires a minimum when the
frequency of the radial motion is 2�n. However, the ampli-
tude of radial pulsations is not small in the present case.
Furthermore, an internal two to one resonance is not always
possible and consequently such a criterion is not applicable
in general. Alternatively, given the size and basic viscoelastic
properties, i.e., membrane elasticity GS, level of softness b or
C, and viscosity �S of a certain contrast agent, its bending
elasticity can be obtained by utilizing stability analysis in the
fashion described in Fig. 11 in order to calculate the ampli-
tude threshold required for the onset of P2 growth over a
range of forcing frequencies. Thus, in an experimental inves-
tigation the forcing frequency for which the secondary local
minimum in the amplitude threshold is obtained provides �2

and subsequently kB. Care should be taken so that local
minima corresponding to higher order resonances with re-
spect to the fundamental � f =n�0 are not confused with the
one corresponding to P2, � f =2�2. Indeed, as can be seen
from Fig. 11�b� a local minimum in the amplitude threshold
exists in the vicinity of � f =2�0; however, it can be distin-
guished from the one with respect to P2, � f =2�2, as they
normally occur at different regions of the spectrum. In the
case illustrated by Fig. 11�a�, the eigenfrequencies for radial
pulsations �0 and shape oscillations of P2, �2, are very close,
and consequently the first and second P0 or P2 resonances are
essentially merged into one.

Figures 11�c� and 11�d� recover this behavior for the
same types of microbubbles as in Figs. 11�a� and 11�b�, re-
garding the onset of P3 oscillations. Again, the same pattern
persists with the primary harmonic resonance prevailing in
the vicinity of � f =�0 and subharmonic resonance away from
that region. Figures 11�c� and 11�d� illustrate the appearance
of minima at the primary resonance, global minimum, and at
the second and P3 resonances, local ones. In addition it can
be seen, upon comparing Figs. 11�a� and 11�b� with Figs.
11�c� and 11�d�, that P2 growth occurs at a lower amplitude
threshold than P3. Very similar patterns are provided by in-
vestigating the dynamic behavior of microbubbles coated by
a strain hardening shell. It should also be stressed that the
abrupt indentations in the marginal sound amplitude curves
observed in Fig. 11 are useful in understanding the structure
of phase diagrams shown in Sec. IV D. It seems that the
abrupt change in amplitude threshold that is often observed
in phase diagrams as the equilibrium radius changes is asso-
ciated with the appearance of a different resonance between
the forcing frequency � f and the eigenfrequencies �0, �2,
�3, etc. of a microbubble whose equilibrium radius Req is
investigated for parametric shape mode excitation.

C. Dynamic buckling

The dynamic phenomena described in Sec. IV B occur
over a long time scale requiring a large number of radial
oscillations before they are observed. In addition, they occur
for an intermediate range of acoustic amplitudes. In particu-
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FIG. 10. Time evolution of �a� the radial position and the amplitude of the
most unstable second Legendre mode w2 and �b� the overpressure exerted on
the shell due to its radial pulsation in response to an external acoustic dis-
turbance characterized by � f�=2�12 MHz and amplitude �=5; a strain
hardening shell is used with C=3.
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lar, if we focus on any of the cases shown in Figs. 8–11 and
raise the amplitude well beyond the region where the onset
of shape oscillations is first observed, instabilities evolve
quite abruptly within a short number of periods of radial
pulsations. Figures 12 and 13 show the evolution of the most
unstable mode when �=35 and 14, respectively, while the
rest of the parameters remain the same as those listed in Figs.
8 and 9. The particular modes are not obtained via Floquet
analysis. Rather, a sweep over a number of eigenmodes was
conducted via time integration of their corresponding ampli-
tude equation, Eqs. �52� and �53�, along with the modified
Rayleigh–Plesset equation �47�, and the mode with the fast-
est growth is depicted in Figs. 12 and 13. Clearly, there is
almost instantaneous growth, in comparison with harmonic/

subharmonic resonance studies, which is tuned to the com-
pressive phase of the radial pulsation. The evolution of the
phenomenon resembles the after bounce and Rayleigh–
Taylor instabilities of free bubbles.12 It should be stressed
that static buckling is also explosive but occurs beyond a
smaller critical overpressure, see also Figs. 5 and 6 versus
Figs. 12 and 13, and the dominant eigenmodes are different,
P2 in Figs. 5 and 6, from those predicted from dynamic
analysis, P4 and P5 in Figs. 12 and 13, respectively. Mode P4

appears in Fig. 13�a� since it is also unstable; however, P5

grows faster. More importantly, as can be seen by monitoring
the acceleration of the interface, Figs. 12�c� and 13�c�, the
latter exhibits very large values during the compression
phase of the oscillation. This determines the phenomenon, in
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the manner observed for free bubbles, in conjunction with
the elastic forces that tend to retain its cohesion in place of
the surface tension of free bubble interfaces. The magnitude
of elastic forces on the interface is controlled by the effective
shear modulus and the shell radius. As was stressed in
Sec. II B for materials following a nonlinear constitutive law,
the former changes as deviations from equilibrium become
more pronounced. As can be gleaned from Figs. 12�a� and
13�a�, strain softening shells tend to exhibit an expansion
only type behavior during the pulsation,31 especially as the
amplitude of the acoustic disturbance increases. Conse-
quently, they maintain a larger radius and, despite the in-

crease in shear modulus during compression, the overall sta-
bilizing effect of elastic strain is not significant.

Dynamic buckling occurs for a lower amplitude thresh-
old for strain softening shells in comparison with strain hard-
ening ones. Graphs �a�–�d� in Fig. 14 illustrate this point
when juxtaposed against Fig. 13. The shell is now strain
hardening and exhibits a larger positive acceleration slightly
before the maximum compression is achieved, in comparison
with the strain softening shell depicted in Fig. 13, due to
softening during compression. Nevertheless, Fig. 14�a� does
not exhibit growth of any unstable mode, even at the large
sound amplitude employed ��=25�, because at the same time
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FIG. 12. Time evolution of �a� the amplitude of the most unstable Legendre
mode w4 and w2, �b� the overpressure exerted on the shell due to its radial
pulsation, and �c� the acceleration of the interface in response to an external
acoustic disturbance characterized by � f�=2�12 MHz and amplitude �
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FIG. 13. Time evolution of �a� the amplitude of the most unstable Legendre
mode w5 and w4, �b� the overpressure exerted on the shell due to its radial
pulsation, and �c� the acceleration of the interface in response to an external
acoustic disturbance characterized by � f�=2�6.5 MHz and amplitude
�=14.
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it also exhibits a compression only type behavior31 leading to
exceedingly small radii during compression. This bears a sta-
bilizing effect due to elastic straining that dominates the ef-
fective decrease in shear modulus during compression, it
counterbalances acceleration and postpones the advent of dy-
namic buckling. In addition, the very small size of the bubble
at rebound produces very strong viscous damping that decel-
erates growth of shape modes. In fact, for the rather small
equilibrium radius tested in Fig. 14, Req=1.5 �m, the bubble
size becomes so small, Fig. 14�a�, and viscous damping is so
large during rebound after peak compression, very large re-
bound velocities are also registered in Fig. 14�c�, that dy-
namic buckling is rendered impossible for the range of sound
amplitudes tested here.

The effect illustrated in Figs. 12 and 13 and Fig. 15 will
be referred to as dynamic buckling for the rest of the present
article. This was a recurring theme in this study, namely, that
for very large external disturbances dynamic buckling takes
place, giving rise to excessively large deviations from sphe-
ricity over a small number of periods of the radial pulsations
and involving relatively higher modes as the most unstable
ones. The time scale for dynamic buckling to appear also
depends on the bending elasticity measured by parameter B.
In particular, as B increases the microbubble becomes stiffer
and the onset of shape oscillations is decelerated, while the
postbuckling behavior is dominated by lower eigenmodes.
This is illustrated in Fig. 15 where the time evolution of the

most unstable mode is shown for a shell with increased stiff-
ness, higher B value, in comparison with the situation in Fig.
13. The shell is stiffer in Fig. 15 and this gives rise to a less
deformed shape after dynamic buckling takes place, in the
sense that lower modes dominate the dynamics, P3 and P4 in
Fig. 15 versus P4 and P5 in Fig. 13. Finally, the time needed
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FIG. 14. Time evolution of �a� the radial position, �b� the overpressure exerted on the shell due to its radial pulsation, �c� the velocity, and �d� the acceleration
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C=3.
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for the above modes to grow to a certain level is larger for
the stiffer shell studied in Fig. 15. Monitoring the time scale
over which a certain amount of growth occurs presents an-
other option for estimating B and through it bending resis-
tance kB.

D. Construction of phase diagrams

Once the elastic properties of the particular contrast
agent are known, i.e., the shear and bending elasticities of
the shell as well as its viscosity, phase diagrams can be con-
structed marking the stability patterns in different regions of
the �Req ,�� space. Graphs �a�–�c� in Fig. 16 illustrate such
phase diagrams for insonation at a certain forcing frequency
of a free bubble, Fig. 16�a�, and contrast agent BR14 with its
shell taken to obey a strain softening and a strain hardening
constitutive law, Figs. 16�b� and 16�c�, respectively. Such
diagrams are constructed in a manner analogous to the case
of free bubbles,12,57 where, as will be seen in the following,
dynamic buckling takes the place of the Rayleigh–Taylor in-
stability of free bubbles. The criterion for the onset of para-
metric instability is based on the most unstable eigenvalue �
provided by Floquet analysis, while the onset of dynamic
buckling is based on the highest growth rate of a specific
mode during the first four cycles of the imposed frequency. It
is adopted based on studies with free bubbles where a mode
is expected to dominate the microbubble shape when it
reaches the same order of magnitude as the current bubble
radius. In this fashion, the phase diagrams shown in Fig. 16
are obtained subject to a sinusoidal pressure perturbation in
the far field of the form

P�� = Pst�1 + � cos�2�� f�t���, � f� = 2�v f�. �67�

� f� is set to 3 and 2.4 MHz for a free bubble and contrast
agent BR14, respectively.

Figure 16�a� essentially reproduces the calculations per-
formed in Ref. 57 in the context of free bubble dynamics in
water and is used in order to standardize our approach and
point to the differences in the dynamic response between free
bubbles and contrast agents. The parameters employed in the
above article are used here also. The stability is examined
after a number of periods of the forcing frequency have
elapsed, all initial transients have settled, and the bubble has
reached the state of periodic pulsation. It should be noted
that it was not possible to identify a periodic radial pulsation
for certain cases. In this case, the radial motion of the bubble
over a period of 20 periods of the external disturbance was
used in order to study parametric stability. In the particular
case of very small bubbles and very large amplitudes, where
it was also not possible to obtain the period of radial pulsa-
tions due to the very small time step required for capturing
the dynamics of the bubbles �dt=10−6�, a time interval of
five periods was used for studying the stability of the radial
motion in order to fit everything in the core memory. Clearly,
in this case, there is a small dependence of the threshold
amplitude on the range of radial pulsation selected for the
base spherosymmetric motion. The curve separating para-
metric mode excitation from Rayleigh–Taylor instability is
not shown in Fig. 16�a� as this transition takes place at a

range of acoustic pressures that lies beyond the interval ex-
amined in that figure. This is a result of the very large forcing
frequency, 3 MHz, in comparison with the resonance fre-
quency of free micron sized bubbles, in which case the sound
amplitude needed for significant mode build-up and, conse-
quently, bubble break-up to take place via Rayleigh–Taylor
instability is very large.
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FIG. 16. Phase diagrams for the dynamic response subject to an external
acoustic disturbance of �a� free microbubbles in water insonated at 3 MHz,
and contrast agent BR14 insonated at 2.4 MHz modeled �b� as a strain
softening �b=0.5� and �c� as a strain hardening �C=5� shell; estimated vis-
coelastic shell properties, kb=1.5�10−13 N m, !=3GMR= �2C+1�GSK

=0.54 N /m, and �s=1.54�10−8 kg /s.
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The viscoelastic properties of BR14, i.e., shell elasticity
and viscosity, are reproduced from the literature24 as they
were obtained based on the frequency and phase lag between
the microbubble and the forcing, at resonance, via optical
observations of single pulsating microbubbles subject to a
varying forcing frequency at relatively low sound amplitudes
�spectroscopic measurements�; 2d area dilatation modulus
K=0.54 N /m and 2d shear viscosity �2d=1.54
�10−8 kg /s. When a strain softening shell is considered
GMR=K /3=0.18 N /m. When the strain hardening constitu-
tive law is employed, Fig. 16�c�, C was arbitrarily set to 5 in
order to generate a rather abrupt softening of the shell at
compression while GSK was set to GSK=K / �2C+1�. This
leaves parameter b, determining the degree of softness of the
microbubble, and the bending resistance kB as the only pa-
rameters to be estimated. They are tuned by reproducing ex-
perimentally obtained time series of the microbubble radius
while monitoring the critical amplitude that is needed for a
certain mode to be parametrically excited for the sound fre-
quency prescribed by the optical observations.1 In this fash-
ion, softness parameter b was estimated to be on the order of
0.5, while a kB value on the order of 1.5�10−13 N m was
obtained in order to reproduce the critical amplitude ��1.5
for parametric growth of P2 for a BR14 microbubble with
equilibrium radius of roughly 3 �m that is insonated at a
forcing frequency of � f =1.7 MHz. In view of the above pa-
rameters, in conjunction with the physical properties of wa-
ter, the dimensionless numbers employed for the construc-
tion of Figs. 4–15 fall within a range that is relevant for the
study of contrast agents.

In the phase diagrams shown in Figs. 16�a�–16�c�, three
regions of bubble dynamic behavior can be identified. In the
first one, the microbubble carries out stable spherosymmetric
oscillations and perturbations on the microbubble interface,
which can be quite large depending on the microbubble size
and viscoelastic properties, will be damped. In the second
region where parametric instability prevails, infinitesimal
disturbances on the microbubble interface will grow period
after period and finally dominate its shape. In the third re-
gion, the Rayleigh–Taylor instability or the equivalent effect
for coated microbubbles, namely, the dynamic buckling in-
stability, dominates the dynamics. In the present study, this is
determined by examining the criterion previously employed
in sonoluminescence studies12,57 that the amplitude of the
emerging unstable mode be equal to the bubble radius. The
predominance of dynamic buckling at large sound ampli-
tudes and its association with the Rayleigh–Taylor instability
for free bubbles is justified by the explosive character of both
of these effects and their emergence during the compressive
phase of radial pulsation. Experimental observation of con-
trast agent destruction provides evidence of this dynamic
pattern58 for conditions, in terms of sound amplitude and
frequency, which cannot be recovered by treating the con-
trast agent as a free bubble. On the contrary, by treating it as
a coated microbubble, stability analysis recovers the ampli-
tude threshold for break-up via dynamic buckling with a re-
alistic estimate for shell elasticity. On a different note, upon
observing Figs. 16�a�–16�c� it can be surmised that curves of
marginal stability with respect to parametric growth of con-

secutive shape modes, P2, P3, etc., are more densely arranged
in the case of contrast agent BR14 treated as a strain soften-
ing shell, Fig. 16�b�, in comparison to the case of free
bubbles, Fig. 16�a�. This behavior is corroborated by experi-
mental observations of parametrically excited BR14
microbubbles1 versus free bubbles, which also attests to the
possibility for shape pulsations of contrast agents while they
are still in tact. It should also be stressed that an initial equi-
librium state of zero residual stress was assumed at t=0 in
the calculations involved in the construction of the phase
diagrams for simplicity.

Based on the viscoelastic properties of BR14, the radius
corresponding to resonance frequency v f =2.4 MHz is calcu-
lated to be on the order of Req�2.3 �m and, as can be
gleaned from Fig. 16�b�, it marks the equilibrium radius for
which the external disturbance required for parametric insta-
bility to take place acquires a local minimum. This was ex-
pected since on resonance the dynamic response is very in-
tense. It is also worth noticing that the amplitude threshold of
smaller contrast agents gradually increases with decreasing
equilibrium radius. This is a result of the fact that resonance
frequency for volume pulsations increases with decreasing
size for strain softening shells31 while at the same time non-
linearity tends to decrease it. This generates the possibility
for nonlinear resonance to occur, between the forcing fre-
quency and the breathing mode, in this size range as the
sound amplitude increases, and indeed this is the case for a
significant portion of the marginal curves below the resonant
size. Beyond a certain size, this is not possible as the reso-
nance frequency ceases to exist19 and gradually the threshold
relevant to static buckling is recovered. For sizes that are
larger than the resonant size, the possibility for nonlinear
resonance between the forcing and the breathing mode of the
contrast agent is absent. In that range, the possibility for
resonance between the forcing and the eigenfrequencies
for shape oscillations becomes an alternative and this ex-
plains the appearance of abrupt indentations in the curves
shown in Fig. 16�b�; � f �2�2 with �2�1.2�106 Hz and
� f =2.4 MHz. The eigenfrequency of P2 can be readily ob-
tained from Fig. 7 for kB=1.5�10−13 N m, �=998 kg /m3,
and Req. In fact, abrupt changes are observed in the ampli-
tude threshold for parametric instability that now occurs at
much larger amplitudes. As indicated by Fig. 11 illustrating
the threshold for P2 and P3 excitation for a specific mi-
crobubble size in the amplitude-frequency domain, reso-
nance between the forcing and the shape modes as well as
superharmonic resonance between the forcing and the
breathing mode produces indentations in the amplitude
threshold. It is believed that the former effect is present and
affects the structure of the marginal curves in Fig. 16�b� as
well. In fact, the absolute minimum in the amplitude thresh-
old for P2 excitation in Fig. 16�b� is obtained around
Req�3,5 �m for which the nonlinear resonance frequency
of the breathing mode �0 approaches �2�1.2�106 Hz
�� f /2. Figure 16�a� also exhibits quite abrupt changes in the
amplitude threshold since the size range that is tested is well
above the resonant size for a forcing frequency of 3 MHz.

In the region of very small equilibrium radii, the insta-
bility threshold approaches the static buckling criterion. This
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is a result of the increased resonance frequency �0 of very
small microbubbles in comparison with the forcing fre-
quency. Consequently, as was illustrated in Fig. 5 in
Sec. IV A, the dynamic response of the microbubble subject
to an external acoustic disturbance asymptotically ap-
proaches the conditions of static buckling. As Req decreases,
static buckling and dynamic buckling occur in the same fash-
ion and exhibit the same dominant mode, normally P2. At
large equilibrium radii, quite higher modes prevail in the
context of dynamic buckling, which also exhibits a minimum
in the amplitude threshold near the resonant size, Req

�2.25 �m.
Figure 16�c� illustrates the dynamic behavior of a strain

hardening shell with the same viscoelastic properties as the
strain softening shell in Fig. 16�b�, except for GSK and C. In
this case the two primary minima in the stability threshold
correspond to equilibrium radii for which the eigenfrequency
for volume pulsations is in near resonance with the forcing
frequency and the eigenfrequency of P2, �2�1.25 MHz
based on Fig. 5�b�. The possibility for nonlinear resonance
for sizes below the resonant size, Req=2.5 �m, is absent for
strain hardening shells, hence the rapid increase of the sta-
bility threshold in order for growth of shape modes to occur.
Energy transfer between modes requires a much larger sound
amplitude in the absence of resonance. The latter effect is
more likely to happen for larger microbubble sizes where
changes in the amplitude threshold are not as abrupt. Finally,
dynamic buckling takes place at very large sound amplitudes
due to the stabilizing effect of straining during compression,
combined with the strong viscous damping that characterizes
the small bubble sizes attained by contrast agents coated by a
strain hardening shell, see also Figs. 14�a� and 14�c�. Exces-
sive viscous damping during compression is also responsible
for the deviation in the amplitude threshold for dynamic
buckling and static buckling to occur for such shells, Fig.
16�c�. In any case, as was also stressed before, the structure
of the phase diagram obtained for strain softening shells is
closer to the experimental observations of pulsating contrast
agents.1

It should be stressed that in producing Figs. 16�a�–16�c�,
viscous damping and acoustic damping in the host fluid were
accounted for in the radial part of the motion for complete-
ness. However, this does not alter the final result significantly
since shell viscosity is the dominant source of damping.
Increasing the scalar bending modulus, by increasing
parameter B, has as a consequence the displacement of
regions corresponding to parametric and dynamic buckling
instabilities to larger amplitudes. In addition, broadening of
the region where parametric instability takes place is ob-
served, before dynamic buckling dominates the microbubble
dynamics.

V. CONCLUSIONS

Linear stability analysis of the radial pulsations of a mi-
crobubble subject to small axisymmetric disturbances re-
vealed the different stability patterns determining loss of
sphericity. For a thin coated bubble, such as those employed
in medical applications, shell anisotropy in the transverse

direction of the shell necessitates introduction of an addi-
tional elastic parameter, namely, the bending elasticity kB

that controls shape deformation of the microbubble. The ra-
tio between bending and membrane elasticity scaled with the
microbubble area, in the form of parameter B, controls static
buckling of the shell that occurs when the forcing frequency
is much smaller than the eigenfrequency for volume pulsa-
tions of the microbubble. It corresponds to a transition from
a spherosymmetric configuration, where elastic energy is in
the form of straining, to a deformed shell where energy is
redistributed between bending and straining, thus achieving a
lower total energy level. Such a transition becomes favorable
at large compressive loads, in which case very large defor-
mations are required for a spherosymmetric configuration to
be sustained. Furthermore, bending elasticity controls the
eigenfrequencies of the shape modes and consequently their
growth as a result of harmonic and subharmonic resonance,
also known as parametric instability. The latter effect arises
at an intermediate range of sound amplitudes for given forc-
ing frequency. In this fashion, performing a frequency sweep
and monitoring the amplitude threshold for the appearance of
a specific shape mode leads to a spectrum representation
where the minima in amplitude correspond to different reso-
nances between the forcing and the eigenfrequencies of the
microbubble. The global minimum corresponds to harmonic
resonance between the forcing frequency and the eigenfre-
quency for volume pulsations, whereas the secondary
minima correspond to growth of shape modes via subhar-
monic resonance between the forcing and, either higher har-
monics of the fundamental breathing mode, or twice the
eigenfrequency for shape oscillations of a shape mode. These
effects occur over a long time scale consisting of a large
number of periods of the radial pulsation. Further increase of
the sound amplitude accelerates the onset of shape modes
until it brings about explosive growth, in a process resem-
bling the Rayleigh–Taylor instability of free bubbles and re-
ferred to as dynamic buckling in the present study. It should
be pointed out that any of the above three phenomena,
namely, static buckling, harmonic-subharmonic resonance, or
dynamic buckling, can be used for the estimation of the
bending stiffness of a certain microbubble for given size,
shear modulus, degree of softness, and viscosity of the en-
capsulating shell.

This, to a great extent, completes the rheological charac-
terization of the shell, which is then succeeded by a phase
diagram marking the regions in the �Req ,�� space where dif-
ferent instability mechanisms prevail. It should be stressed
that the accuracy by which a phase diagram represents the
dynamic behavior of a certain contrast agent strongly de-
pends on the accuracy of the estimation of the parameters
involved in the constitutive law that describes the mechanics
of the shell. Furthermore, it depends on the degree to which
the particular constitutive law captures the mechanical be-
havior of the shell. The viscoelastic parameters employed for
the construction of phase diagrams in Sec. IV D capture the
qualitative characteristics when compared against experi-
mental observations.1 However, they cannot produce a de-
tailed comparison nor can they predict other known effects
associated with the particular contrast agent under examina-
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tion, i.e., BR14, such as vibration onset, compression only
behavior, etc., with the desired accuracy while keeping the
same set of parameter values. The reason for this discrepancy
lies in the nature of the available constitutive laws pertaining
to linear, strain hardening, or strain softening shells. They
were all derived for different materials and despite the fact
that they contain aspects of the behavior of the shell material,
phospholipid monolayer in the case of BR14, they are not
exactly applicable to the particular contrast agent in use.

Nevertheless, the specific constitutive laws employed in
the present study are very useful in studying contrast agent
dynamics as they contain mechanical aspects that are essen-
tial in capturing certain key phenomena associated with con-
trast agents. More specifically, nonlinearity in the stress-
strain relationship allows variation of the resonance
frequency with sound amplitude and explains the rich har-
monic content of lipid shells, especially the strain softening
shells. In addition, the inherent asymmetry in the strain soft-
ening and strain hardening shells can account for the expan-
sion only and compression only types of behavior that are
often observed in the literature. Finally, the methodology via
the constitutive law allows for a systematic extension of the
theory to capture nonspherosymmetric stretching of the coat-
ing in conjunction with the introduction of bending energy,
in a manner similar to classic shell stability theory. In this
fashion, an interesting interplay between shell mechanics and
dynamics was illustrated by the results of the present study,
as this is manifested in the differences in the dynamic re-
sponse of Mooney–Rivlin and Skalak shells. The former re-
quire a larger load for static buckling to occur, since they are
hardened at compression, thus leading to arrangements that
are characterized by smaller deformations from equilibrium
and that are less susceptible to shape deformation. In the case
of dynamic buckling, the relative importance between
interfacial acceleration and elastic strain, along with viscous
damping during compression, controls the phase of rapid
microbubble compression that determines subsequent defor-
mation. The fact that strain hardening shells become softer
during compression leads to much smaller radii and stronger
elastic forces that counterbalance the effect of acceleration

during compression, and decelerate growth of shape modes
due to stronger viscous damping during rebound, in compari-
son with strain softening shells.

The above interplay between mechanical and dynamical
aspects of contrast agent behavior constitutes a useful tool
for the analysis of optical and acoustic observations of con-
trast agents.1,58,59 Data obtained in that manner, exhibiting
deviation from spherosymmetry, can be analyzed and impor-
tant conclusions can be drawn regarding the validity of dif-
ferent constitutive laws. Once the constitutive law is known
within a certain degree of accuracy, the theoretical back-
ground that is available in the literature and extended herein
can be used in order to predict all aspects of contrast agent
behavior, with a well defined set of parameter values, and to
design future generations of agents depending on the particu-
lar application.
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APPENDIX: VISCOELASTIC FORCES TO O„1…
ANDO„�…

The viscoelastic component of the normal force due to
the shell assumes the following forms for a MR and a SK
membrane:


FN
0,MR =

2�R6 − 1��1 + bR2 − b�
3R7 +

4

Res

Ṙ

R2 ,

�A1�


FN
0,SK =

2�R2 − 1 + CR6 − CR2�
3R

+
4

Res

Ṙ

R2 .

More details on the above formulas are provided in I. In the
same fashion, to O���, the normal and tangential components
of the viscoelastic force for a MR and a SK membrane read


FN
1,MR = −

1

3R8 �H�w��bR8 + �1 − b�R6 − bR2 + �b − 1�� + H����− 2bR8 − 4bR2 + 6�b − 1�� + w�− 2bR8 + 2R6�1 − b�

− 10bR2 + 14�b − 1��� +
2

Res R3 �RH��̇� − Ṙ�H��� + H�w�� + 2Rẇ − 4Ṙw� +
B

R4 �HH�w − �� + �1 − v�H�w − ��� ,

�A2a�


FN
1,SK = −

1

3R2 �H�w��CR6 − CR2 + R2 − 1� + H����− 6CR6 + 2CR2 − 2R2� + w�2CR2 − 10CR6 − 2R2 − 2��

+
2

Res R3 �RH��̇� − Ṙ�H��� + H�w�� + 2Rẇ − 4Ṙw� +
B

R4 �HH�w − �� + �1 − v�H�w − ��� , �A2b�
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Ft
1,MR = −

1

3R8 �w��6 − 6b + 4bR2 + 2bR8� + ���− 2bR6 + 2R6 − 3�n + 2bR2 + bR6�n + 3b�n − 3bR2�n − R8b�n − R6�n��

+
2

Res R3 �− R�1 − �n��̇� + Ṙ�1 − �n��� − Rẇ� + Ṙw�� +
B

R4 �w� − ����− �n + 1 − v�, � = 0.5, �A3a�


Ft
1,SK = −

1

3R2 �w��2R2 − 2CR2 + 6CR6� + ����n − 2 − 3C�nR6 + CR2�n + 4R2 − 3R2�n��

+
2

Res R3 �− R�1 − �n��̇� + Ṙ�1 − �n��� − Rẇ� + Ṙw�� +
B

R4 �w� − ����− �n + 1 − v�, � =
C

1 + C
, �A3b�

where u
�� /�� and the following identities have been
used:

H� � =
�2

��2 � � + cot���
�

��
� � , �A4a�

""� � =
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��2
 �2

��2 � � + cot���
�

��
� ��

+ cot���
�

��

 �2

��2 � � + cot���
�

��
� �� . �A4b�

Operators H� � and HH� � are typically employed in classical
axisymmetric shell theory15 in order to simplify the algebra
by utilizing the useful properties of the Legendre polynomi-
als Pn,

"�Pn� = − �nPn, HH�Pn� = �n
2Pn, �n = n�n + 1� ,

�A5�

�3

��3 � � − �1 + cot2 ��
�

��
� � + cot���

�2

��2 � � = − �n
�

��
� � .
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