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A numerical method is developed to study the dynamic behaviour of an encapsulated
bubble when the viscous forces of the surrounding liquid are accounted for. The
continuity and Navier—Stokes equations are solved for the liquid, whereas the coating
is described as a viscoelastic shell with bending resistance. The Galerkin Finite
Element Methodology is employed for the spatial discretization of the flow domain
surrounding the bubble, with the standard staggered grid arrangement that uses
biquadratic and bilinear Lagrangian basis functions for the velocity and pressure in
the liquid, respectively, coupled with a superparametric scheme with B-cubic splines
as basis functions pertaining to the location of the interface. The spine method
and the elliptic mesh generation technique are used for updating the mesh points
in the interior of the flow domain as the shape of the interface evolves with time,
with the latter being distinctly superior in capturing severely distorted shapes. The
stabilizing effect of the liquid viscosity is demonstrated, as it alters the amplitude of
the disturbance for which a bubble deforms and/or collapses. For a step change in the
far-field pressure the dynamic evolution of the microbubble is captured until a static
equilibrium is achieved. Static shapes that are significantly compressed are captured in
the post-buckling regime, leading to symmetric or asymmetric shapes, depending on
the relative dilatation to bending stiffness ratio. As the external overpressure increases,
shapes corresponding to all the solution families that were captured evolve to exhibit
contact as the two poles approach each other. Shell viscosity prevents jet formation by
relaxing compressive stresses and bending moments around the indentation generated
at the poles due to shell buckling. This behaviour is conjectured to be the inception
process leading to static shapes with contact regions.
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1. Introduction

The dynamic behaviour of encapsulated microbubbles, also known as contrast
agents, plays a key role in novel biomedical applications involving ultrasound,
among which the most important and promising ones are targeted drug delivery
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and the medical imaging of vital organs. In the former case, using an appropriate
acoustic disturbance, encapsulated microbubbles that carry drugs are attached to
the affected site and then ruptured (Ferrara, Pollard & Borden 2007). In the latter
application, gas-filled microbubbles are used which are able to enhance the ultrasound
backscatter and contrast, in comparison with the acoustic signal from nearby tissue,
thus producing high-quality images (Kaufmann, Wei & Linder 2007) as a result of
their nonlinear nature as sound scatters.

Upon their application in medical imaging or drug delivery techniques, contrast
agents will typically interact with a nearby boundary and emit sound signals.
Nevertheless, it is of interest to study their response in an unbounded medium
in order to examine the stability of static configurations that exhibit different degrees
of deformation as a result of the anisotropic nature of elastic stresses (Knoche &
Kierfeld 2011; Lytra & Pelekasis 2014), and to assist shell characterization studies
where coated bubbles are subjected to sonication in containers whose dimensions are
much larger than their radius (Church 1995; Shi & Forsberg 2000; Van der Meer
et al. 2007), where deformed shapes are reported (Marmottant et al. 2005; Overvelde
2010) using optical imaging techniques of freely pulsating coated microbubbles. In
particular, when lipid monolayers comprise the shell that encloses the gas bubble,
characterization studies that provide estimates of shell elasticity and viscosity based
on acoustic measurements exhibit significant variation in the elasticity modulus and
shell viscosity they provide (Marmottant et al. 2005; Van der Meer et al. 2007,
Overvelde 2010). This failure to provide reliable viscoelastic shell properties is often
associated with compression-only behaviour where lipid monolayer shells are seen
to pulsate mainly in the compression phase of their radial time series (De Jongo
et al. 2007), while exhibiting significant shape distortion (Marmottant et al. 2005;
Overvelde 2010). The latter response is counter-intuitive since lipid monolayer shells
exhibit a strain-softening behaviour when subjected to acoustic disturbances (Tsiglifis
& Pelekasis 2008; Thomas et al. 2009; Katiyar & Sarkar 2011), as a result of the
reduction in area density of the lipid monolayer shell with increasing interfacial area,
which amounts to a preferential excursion from equilibrium during expansion (De
Jongo et al. 2007; Tsiglifis & Pelekasis 2008), especially at large sound amplitudes.

An interesting aspect of compression-only behaviour of lipid shells pertains to
the shape deformation that is typically observed when optical observations of the
microbubble shape are available along with the radial time series (Marmottant et al.
2005; Overvelde 2010). This effect was associated with shell buckling in the latter
studies without, however, introducing shell bending resistance or providing a relevant
parametric study of the static response of lipid shells. Such a study, performed
by Marmottant et al. (2011) for the case of polymeric shells, focuses on the
onset of wrinkled three-dimensional shapes without providing a detailed bifurcation
diagram. The static response of lipid shells is known to be different from that of
polymeric shells (Lytra & Pelekasis 2014), but the details of static equilibrium are
not known, nor is the stability of the emerging shapes. The present study constitutes
a first effort in the direction of obtaining detailed bifurcation diagrams of lipid and
polymeric shells, along with the corresponding stability characteristics, in order to
identify buckling events in available acoustic measurements, particularly so for the
compression-only response pattern of lipid shells, and assess their effect on shell
parameter estimation.

Numerical simulations of pulsating coated microbubbles with the boundary element
methodology (Tsiglifis & Pelekasis 2013), when potential flow is considered in the
surrounding liquid, recover a tendency for preferential excursion from equilibrium
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during compression due to nonlinear interactions between emerging shape modes
during compression, as a manifestation of harmonic or subharmonic excitation (see
also Tsiglifis & Pelekasis (2011) for an extensive analysis of this mechanism of
shape mode excitation of coated microbubbles) and the breathing mode of pulsation;
the latter term refers to volume pulsations of the bubble. Nevertheless, the extent
of the compression amplitude obtained by the simulations performed in the latter
study was smaller than the one reported from optical measurements. The effect of
pre-stress was introduced in order to enhance the onset of shape pulsations for lower
sound amplitudes. However, in both cases the calculated deviation from equilibrium
in favour of compression that was captured was not comparable with the measured
values. Further increase of the sound amplitude accelerated the onset of dynamic
buckling that led to bubble breakup before any significant mode interaction took
place.

In the present study the dynamic behaviour of a contrast agent is investigated in an
unbounded flow when the viscous forces of the surrounding liquid are also accounted
for. According to static analysis (Knoche & Kierfeld 2011; Lytra & Pelekasis 2014)
encapsulated microbubbles may reach a static non-spherical equilibrium state when
subjected to step change disturbances. We are interested in examining the dynamic
response of coated microbubbles to such disturbances and investigate the possibility
for a static solution. In this context, the relative importance of shell and liquid
viscosity in controlling the dynamics towards static equilibrium must be ascertained,
since previous numerical studies assuming potential flow conditions (Liu et al. 2011;
Tsiglifis & Pelekasis 2013), or taking into account the viscosity of the surrounding
fluid (Liu et al. 2011), focus on the effect of shell and liquid viscosity, respectively.
Furthermore, it is important to study the response of contrast agents to greater
disturbances in the far-field pressure and determine whether jet formation occurs,
as is the case with gas-filled bubbles (Blake ef al. 1997) in the vicinity of a solid
boundary. The latter type of bubbles are known to collapse via jet formation and
impact that typically leads to multiply connected bubbles, i.e. toroidal and satellite
bubbles (Blake et al. 1997, 1999). In particular, it is of interest to identify possible
collapse scenarios that are relevant to coated microbubbles, and distinguish them from
gas-filled bubbles.

For the case of encapsulated bubbles, there are experimental studies which
report that the presence of a nearby boundary may accelerate growth of interfacial
instabilities and instigate phenomena such as jet formation and, finally, collapse
of the bubble (Zhao, Ferrara & Dayton 2005; Vos et al. 2008; Chen et al. 2011).
The above experimental studies examine the situation with the coated microbubble
pulsating in response to an acoustic disturbance, in the vicinity of a boundary. In
this fashion, microbubble shapes that are asymmetrically deformed in the direction
perpendicular to the boundary surface were captured (Vos et al. 2008) while jet
formation was observed in the compression (Zhao et al. 2005) and expansion phase
of the pulsation (Chen er al. 2011), respectively. In the present study, the possibility
for similar phenomena to develop will be investigated, for coated microbubbles that
are subject to a step change in the far-field pressure. In this case, shell elasticity,
viscosity and bending offer many alternatives for redistributing surface energy at
static equilibrium (Church 1995; Lytra & Pelekasis 2014), and jet formation may not
be a viable dynamic route. Furthermore, elastic shells subject to a uniform external
pressure load are known to exhibit static shapes in their post-buckling behaviour that
exhibit contact (Knoche & Kierfeld 2011). In the present study it is of interest to
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investigate the possibility that formation of contact regions arises during the dynamic
response to a step change in pressure, which leads to static equilibrium without jet
formation.

In the case of free gas bubbles the spherical configuration is the only possible static
shape in the absence of field forces or acoustic disturbances, and shape deformation,
jet formation, and breakup constitute very common dynamic responses. Potential flow
solvers employing the boundary integral method provide a very accurate description
of the dynamic response of pulsating, deforming and/or collapsing bubbles provided
by experiments, even in the absence of nearby boundaries (Lauterborn & Bolle 1975;
Dear & Field 1988; Pelekasis & Tsamopoulos 1993a,b; Blake et al. 1997, 1999). The
influence of viscosity on the dynamic response of an initially elongated gas bubble in
an unbounded flow, subject to internal overpressure, was studied by including weak
viscous effects of the surrounding fluid via integration of the equations of motion
across the boundary layer that is formed adjacent to the bubble interface (Tsiglifis
& Pelekasis 2007). In this fashion, jet formation and breakup were captured for
sufficient initial elongation and internal overpressure levels, below which jet formation
was suppressed and the bubble eventually retracted to assume a spherical shape as
a result of viscous damping. Simulations of this flow arrangement are repeated here
as benchmark calculations. The effect of viscous dissipation on the collapse of a gas
bubble that pulsates near a solid boundary has also been accounted for by Popinet
& Zaleski (2002), by solving the axisymmetric Navier—Stokes equations with free
surface boundary conditions on the bubble interface. The numerical method was
based on a finite volume formulation using both a fixed grid and a front tracking
approach while the free surface was simulated using surface points connected with
cubic splines. Thus, jet formation and rebound were captured and it was concluded
that the jet impact velocity decreases as viscosity increases until, below a certain
critical Reynolds number, jet impact was impossible.

Extensive numerical simulations of the dynamic response of contrast agents are not
available in the literature, owing largely to uncertainties regarding proper modelling
of the shell, especially in the case of phospholipid shells. Furthermore, the degree to
which potential flow considerations can sufficiently capture the dynamic behaviour of
deforming contrast agents is not fully understood. Qin & Ferrara (2006) developed
a lumped parameter model as a means to incorporate elastic effects, mainly in the
surrounding vessel, in order to study the acoustic response of a coated microbubble
that pulsates in a compliant microvessel. They were thus able to calculate the stresses
that develop on the microvessel wall as result of the pulsating motion, which was
also seen to increase the permeability of the vessel. More recently, numerical studies
were conducted to address the above issues via the finite volume (Liu et al. 2011)
and boundary integral method (Tsiglifis & Pelekasis 2013) as a means to obtain a
more detailed description of the velocity field in the surrounding fluid but also the
elastic stresses on the coating. In particular, Liu et al. (2011) explored numerically the
shape oscillations in an unbounded flow of an encapsulated microbubble that obeys
the Mooney—Rivlin constitutive law by solving the continuity and the Navier—Stokes
equations with the finite volume method using a boundary fitted coordinate system.
They observed mainly subharmonic shape mode excitation when the forcing frequency
was twice the natural frequency of the shape mode, in agreement with results based
on linear stability analysis (Tsiglifis & Pelekasis 2011). Tsiglifis & Pelekasis (2013)
performed boundary integral simulations of pulsating contrast agents, while ignoring
viscous effects on the liquid side, in view of the relatively large shell viscosity
and the typical small size of encapsulated bubbles. They captured harmonic and
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subharmonic shape mode excitation during the compression phase of the pulsation,
for the parameter range predicted by linear stability (Tsiglifis & Pelekasis 2011). This
led to saturated shape oscillations and breakup beyond a certain amplitude threshold.
The latter response pattern conforms with ‘dynamic buckling’, corresponding to
an effect that was identified in Tsiglifis & Pelekasis (2011) as the equivalent
of the Rayleigh-Taylor or rebound instability of free bubbles that arises due to
the accelerating motion of the interface during the rebound of the compressive
phase of the microbubble. The effect of the constitutive law was also examined
and it was seen that polymeric bubbles conform well with neo-Hookean behaviour
whereas phospholipid shells conform with strain-softening behaviour, except for the
phenomenon of ‘compression-only pulsation’. In this context, nonlinear interaction
between the emerging shape mode and the radial mode was captured, especially
for phospholipid shells, resulting in a small preferential excursion from equilibrium
during compression.

Static buckling was not captured in the above studies, nor has it been reported
as the limiting state of any of the available dynamic simulations of encapsulated
microbubbles. This is a central topic of the present study where we solve the
continuity and the Navier—Stokes equations for the surrounding liquid in order to
investigate the influence that the viscosity has on the behaviour of the bubble. The
shell of the contrast agent is modelled as a thin strain-softening membrane via the
Mooney-Rivlin constitutive law. A detailed description of the approach that is used
to model the viscoelastic shell of the bubble can be found in Tsiglifis & Pelekasis
(2008, 2011, 2013). In the simulations reported herein, the Galerkin Finite Element
Methodology is used. We employ a hybrid interpolation scheme that uses biquadratic
and bilinear Lagrangian functions for the velocity and the pressure, respectively, in
conjunction with one-dimensional cubic splines for the bubble shape. The introduction
of cubic splines is necessary in the case of a coated microbubble since the description
of the shell mechanical behaviour requires proper modelling of its bending resistance,
and therefore a fourth-order partial derivative appears in the interfacial stress balance.
A similar mixed interpolation superparametric technique was successfully used in
earlier studies, as for example by Saito & Scriven (1981) in order to simulate film
flows with highly bent menisci.

The numerical grid is constructed with two different methods: the spine method
and the elliptic mesh generation technique. The spine method is very common in
problems related with moving interfaces, and is based on converting the complex
physical domain to a rectangular computational one. This method was first introduced
by Kistler & Scriven (1983) for the study of coating flows that involve heavily
deformed free surfaces. Patzek et al. (1995) examined numerically the nonlinear
response of an inviscid drop to two-dimensional disturbances. They applied the finite
element methodology while the mesh was constructed with the spine method in
order to follow the deformation of the free surface. Notz & Basaran (1999) used
the spine method to discretize the physical domain of a pendant drop hanging on a
nozzle. In order to simulate the highly deformed shapes that emerge they divided the
physical domain into several subdomains and introduced a remeshing technique to
facilitate numerical resolution of the exact shape at the time of breakup. In a different
context, Foteinopoulou, Mavratzas & Tsamopoulos (2004) constructed the numerical
grid via the spine method to explore bubble growth in Newtonian and viscoelastic
filaments undergoing stretching. In a different context, Chen & Tsamopoulos (1993)
solved numerically the Navier-Stokes equations in order to simulate forced and
free oscillations of capillary bridges. They used the finite element method with a
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non-orthogonal coordinate transformation to map the moving boundaries onto a fixed
domain and an implicit finite differences scheme with an adaptive time step for
transient integration.

The elliptic mesh generation method is an evolution of the orthogonal mesh
generation scheme — the latter was developed earlier by Ryskin & Leal (1983) for
capturing free surface flows involving deformable bodies — that was developed and
implemented by Christodoulou & Scriven (1992) for coating and thin film flows,
and Tsiveriotis & Brown (1992) for the study of crystal growth and solidification.
This technique is based on solving a partial differential equation for the coordinates
of each mesh point, thereby mapping the physical domain onto the computational
one. The elliptic equations are a combination of weighted functions that control
smoothness, orthogonality and density of the grid, which constitute the three major
characteristics that define grid quality. In this fashion, the elliptic equations together
with the boundary conditions determine the actual position and quality of the resulting
grid. This method has been used successfully in many studies that involve moving
interfaces. Notz & Basaran (2004) studied numerically the contraction of a filament
of an incompressible Newtonian liquid in a passive ambient fluid in an effort to
understand the dynamics of satellite drops created during drop formation. The
governing equations were solved with a finite element algorithm and the elliptic mesh
generation technique, as it was implemented by Christodoulou & Scriven (1992), was
used. Widjaja er al. (2007) compared the spine and the elliptic mesh generation
techniques for studying numerically the fluid dynamics inside an evaporating liquid
sessile drop. They reported that although the spine method gives acceptable results
for this particular problem, it needs denser numerical grids compared to the elliptic
mesh generation technique. Moreover, multiple subregions must be used to ensure
sufficient mesh refinement close to the interface and the solid substrate. Finally, they
concluded with the fact that the elliptic mesh generation method is preferred over
the spine mesh method. In a different context, the elliptic mesh generation technique
was also used for capturing shape oscillations of a rising bubble and exploring the
possibility for three-dimensional path instabilities to emerge (Takagi, Matsumoto &
Huang 1997).

Dimakopoulos & Tsamopoulos (2003), based on the previous studies of
Christodoulou & Scriven (1992) and Tsiveriotis & Brown (1992), developed a
quasi-elliptic transformation that, combined with an appropriate set of boundary
conditions, is able to satisfactorily follow the large deformations of the interface by
demanding the least possible grid reconstruction. This modified elliptic transformation
was used successfully in various contexts, such as the transient displacement of
a viscoelastic fluid in a cylindrical tube and bubble growth in Newtonian and
viscoelastic filaments undergoing stretching (Chatzidai et al. 2009). In our study
we used the elliptic transformation and the boundary conditions that Dimakopoulos
& Tsamopoulos (2003) proposed for the elliptic mesh generation, and made the
necessary modifications in order to take into consideration the viscoelastic properties
of the membrane (the bending resistance in particular), while placing emphasis on
the flow—structure interaction nature of the problem.

This paper is organized as follows: the problem formulation is discussed in §2,
where the governing equations for the liquid flow are presented along with the
ones describing the encapsulated bubble. Next, in §3 the numerical method that
has been developed for discretizing the governing equations is outlined, and specific
benchmark tests are presented that have been performed in order to validate the
numerical method. In §4 the results of our simulations are presented and, finally, in
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§ 5 the main conclusions are summarized. In appendix A the conservation of energy
for the problem studied herein is analysed, whereas in appendix B the two methods
that are employed for the mesh construction are presented, i.e. the spine method and
the elliptic mesh generation technique.

2. Problem formulation

We are interested in examining the dynamic behaviour of an encapsulated
microbubble with initial radius R; that is submerged in a Newtonian liquid of density
p and dynamic viscosity u when the full viscous effects of the surrounding fluid
are accounted for. We consider an unbounded flow and we investigate the bubble’s
response to a disturbance imposed on the far pressure field:

P_=P, +P (2.1)

dist®

with P, P/, denoting the dimensional undisturbed and disturbed pressure on the far

field, respectively. A step change disturbance is introduced:
P, =¢P,, (2.2)

where ¢ represents the magnitude of the imposed disturbance; throughout this paper
dimensional variables are indicated by primed letters.

The initial radius R, of the bubble is taken as the characteristic length scale of
the problem, whereas the angular eigenfrequency w, pertaining to radial pulsations
of the bubble determines the appropriate time scale as 1/wy. Throughout this paper
the Mooney—Rivlin law is used for the elastic part of the shell stresses which
describes materials that are very thin, isotropic, volume-incompressible and have a
strain-softening behaviour, i.e. the shear modulus of the membrane is reduced as
strain grows. The angular eigenfrequency of the breathing mode w, for a coated
microbubble as obtained by linear stability analysis reads:

1 12
wy = <3(3y(20 + P, Ry) — 20 + 4)()) , (2.3)
PRy

where o is the surface tension, x the area dilatational modulus and y the polytropic
constant. Due to the small size of such microbubbles their eigenfrequency for volume
pulsations is of the order of several MHz. As a result, and in order to facilitate
comparison of results obtained with different area dilatation moduli, in the present
study we use the angular frequency, w,, of a conventional gas bubble with the same
properties as those associated with the coated microbubble under examination, except
for the area dilatation modulus, which is set to 0, as the reference time scale of the
problem; it reads as w, = 2mv,, with v, set to 1 MHz. Therefore, the characteristic
velocity and pressure scales are w,Ry and pw?R3, respectively.

The problem of a single bubble in an unbounded flow is described via a spherical
coordinate system and in order to obtain the governing equations we assume
axisymmetric variations of the bubble shape as well as the liquid velocity and pressure,
i.e. no variations are considered in the azimuthal direction for either the liquid or
the bubble. In figure 1 a schematic representation of the flow under consideration is
provided, with f; denoting the r-coordinate of the thin shell that coats the bubble.

The flow in the surrounding liquid is governed by the mass conservation and
momentum equations. The liquid is taken to be incompressible, in which case the
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P =P, + Py,

Liquid p, u

f=m 0=0

FIGURE 1. Single bubble in an unbounded flow.

continuity equation and momentum balance, via the Navier—Stokes equations, read in
dimensionless form:

V.u=0, 2.4)

du

1 1
+w-VYu=-Vp+ —V.1, o=—pl4+—1, T=VUu-+ Vu©, (2.5a—c)
ot Re Re

where u = (u,, uy, 0), Re = (,oa)rRé) /u is the Reynolds number of the surrounding
liquid flow that compares inertia with viscous forces, o, 7, the full and deviatoric
stress tensors in the surrounding fluid and / the unit tensor. In the above formulation
buoyancy has been neglected owing to the small size of the bubble.

In order to obtain the deformation of the bubble we use a Lagrangian representation
of the interface by introducing a Lagrangian coordinate £ (0 <& < 1) which identifies
the particles on the interface. In this context, the arclength, S, of the interface is
related to the coordinate, &, of the interface by:

aS
= (r; +r°6)'">. (2.6)
The force balance on the gas—liquid interface reads in dimensionless form:
Pl I N . Y Q.7
- —7T|+n n=—— =—n , .
Re ' ¢ We We

where n denotes the unit normal vector pointing towards the surrounding fluid
and /, 7; the unit and deviatoric stress tensors of the liquid, respectively; Pg is the
dimensionless pressure of the gas inside the bubble; Vi, k,, denote the surface gradient
and mean curvature of the bubble’s interface, respectively, and We = (pw?R})/o is
the Weber number comparing inertia with capillary forces. Despite its viscoelastic
nature a certain amount of surface tension is typically assumed for the shell (Church
1995; Khismatullin & Nadim 2002; Marmottant et al. 2005; Sarkar et al. 2005) as
a measure of the isotropic surface tension. Finally, AF is the resultant force due to
the viscoelastic properties of the membrane, which is set to zero in the case of a
gas-filled bubble. Based on the theory of elastic shells the force, AF, in the case of
a contrast agent is derived by the surface divergence of the viscoelastic tension tensor
on the membrane’s surface and is equal to:

aTS 1 87'()
+ R —
aS  ryp dS

10
AF = ksts + k¢f¢ — raS(qu):| n — |: (Ts - T¢) + kbq €y, (28)
0
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with 7,, 7, denoting the principal elastic tensions, ry = r sin 6 the radial polar
coordinate and e, the tangential unit vector; g is the transverse shear tension that
is obtained from a torque balance on the shell (Timoshenko & Woinowsky-Krieger
1959; Pozrikidis 2001):

= ——— | —Wromy) —m , .
9 ro A 8ro 0 ¢

where m;,, m, are the principal bending moments. The membrane and bending stresses
are defined via the shell constitutive laws. The membrane tensions consist of an elastic
and a viscous component, e.g. T, =T, + T,,. We adopt the Mooney—Rivlin model for
the elastic part (Barthes-Biesel, Diaz & Dhenin 2002):

2R3
Ts,el = tj”elf = 7)(/('0160’ 0 </1¢2 — 3
! 3/15/1(}5 (/ls/ld))

>[1+b(/1;—1)], (2.10)

with A;, A4, denoting the principal extension ratios and b is the degree of softness. In
axisymmetric geometry they assume the form:

_ 5@ o, n® 2.11a,b)

A, = s = .
S:0) "7 r(0)

The viscous components of the in-plane stresses, t,,, Ty,, are provided via
introduction of a Newtonian-like linear constitutive law while taking the dilatational
and shear viscosity of the shell as equal (Barthes-Biesel & Sgaier 1985) to u,, in the
absence of more accurate rheological data. In dimensionless form this reads:

2 104, 2 104,
Tso = - s Tpv — T
Re, A, 9t Re, 4, ot

(2.12a,b)

with (1/4,)(04,/0t) and (1/4,)(d4,/0t) denoting the principal components of
the rate of deformation tensor and Re, the shell Reynolds number defined as
Re, = (pler?))//'Ls

Finally, the dimensionless principal bending moments m,, m, are provided by the
following equations that constitute a linear constitutive law for the bending stresses:

k w*R> k w*R}
IO L, LD

where v is Poisson’s ratio, k; is the bending elasticity and K, K, the bending measures
of strain that relate the deviation of the two principal curvatures kg, k, from their
reference value kf , k(’; in the absence of bending:

(K, + vK,), (2.13a,b)

s

Ky = Ak —k, Ky =A5ky — k. (2.14a,b)

Bending resistance k;, is treated as an independent parameter herein, in order to
account for the fact that a definitive shell thickness cannot be defined for phospholipid
shells (Zarda, Chien & Skalak 1977), while the reference curvatures are taken to be
equal and constant, corresponding to a spherical reference shape. A more detailed
description of the approach presented above for the modelling of the viscoelastic
shell of the bubble can be found in Tsiglifis & Pelekasis (2008, 2011, 2013).
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Continuity of the liquid and shell velocities on the interface reads as:

Dr, 9 36
_or L ou =2, (2.15a,b)

T ot

with r =re, denoting the position vector of a particle at the interface. At equilibrium
a stress-free state is assumed on the interface of radius R,, where the dimensionless
pressure, Pg, inside the bubble is related to the dimensionless pressure, P, on the far
field through the Young-Laplace equation:

2

Ps(t=0)=P,+ e (2.16)

The pressure inside the bubble is taken to be uniform due to negligible density and

kinematic viscosity of the enclosed gas. Moreover, heat transfer between the bubble

and the surrounding liquid is assumed to take place fast in comparison with the time

scale of the phenomena under consideration. In this context, bubble’s oscillations are
characterized as nearly isothermal, and therefore the bubble pressure is given by:

Po(t=0)V(t=0) = Po() V(D). 2.17)

with Vi denoting the dimensionless instantaneous volume of the bubble, V;(r=0) =
47 /3 the initial volume of the bubble and y the polytropic constant set to 1.07 for
an almost isothermal variation. The latter value is also close to the ratio between the
specific heats of certain ideal gases that are carried by known contrast agents and
undergo adiabatic pulsations during insonation.

Finally, in appendix A the analysis of the energy conservation is presented and the
different energy constituents are extracted in order to illustrate the manner in which
the energy is distributed during the evolution of the phenomena under consideration.

3. Numerical methodology

Numerical solution of the above problem formulation is performed via the Galerkin
Finite Element Methodology with a hybrid scheme that uses 2D Lagrangian functions
to discretize the surrounding flow field, in conjunction with 1D cubic splines for
the bubble shape. In the case of an encapsulated bubble the introduction of cubic
splines is necessary because a fourth-order derivative arises in the force balance
equation through the bending resistance of the membrane. They are preferred over
other functions, such as the Hermite cubic functions, because they ensure continuity
of the second derivative without introducing the derivative of the interpolated function
as an additional unknown to the problem. In this context, biquadratic and bilinear
Lagrangian basis functions are used for the velocity and the pressure of the liquid
respectively, while cubic spline functions are employed to discretize the interface.
Pressure is treated via a staggered grid formulation in order to circumvent the
Babuska—Brezzi condition and avoid numerical instabilities (Babuska 1973). The fully
implicit Euler time integration scheme is introduced in order to make optimal use of
its numerical dissipation properties against growth of short-wave instabilities. In this
context, the discretized forms of continuity and Navier—Stokes equations are:

///N,V-udV:O, 3.1
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ou
// M -ede—|—// M,«(u-V)u-ede-l—// MiVp e dV
1
—// MV -7 -edV=0, (3.2)
Re

where M;, N; are the biquadratic and bilinear Lagrangian functions respectively;
dV = r? sin 6 drdf d¢ is the differential volume of integration and vector e; refers
to one of the unit vectors e,, ey corresponding to the components of the momentum
differential balance. Upon integrating by parts (3.2), the r- and 6-components of the
weak formulation of the momentum equation are derived:

0
// [M[ (;: + (u - V)u) cex —pV - (Miex) + 7 :V(Mey)| r*sin@ drdo
A

1
+ ?g Mi(—n) - (pl cep— —T- ek> rsinfdS =0. (3.3)
T Re

The azimuthal angle, ¢, has been integrated out of the above equations due to
axisymmetry, essentially generating a two-dimensional geometry to be discretized
with a line integral at its boundary. The area integral corresponds to the region
between the bubble-liquid interface and the far field, and the line integral is defined
along the generating curve of the axisymmetric shell and a circular surface in the far
field where the pressure disturbance is applied.

The usual procedure when simulating flow problems with the Finite Element
Methodology technique is to substitute for quantities appearing in the line integrals
with their equivalent terms arising from the normal and tangential force balance
equations. This procedure is appropriate for the study of free bubbles. However, in
the case of contrast agents this is impossible since that particular integral requires
interpolation of a fourth-order partial derivative for the calculation of bending stresses,
and Lagrangian basis functions, M;, fail to interpolate the second derivatives that arise
in the weak formulation after integration by parts. Therefore the momentum equation
is not written on the interface. Rather, continuity of the radial and polar velocity
components is imposed as an essential condition. Furthermore, since we employ a
Lagrangian representation for the shape of the bubble we need two equations for
each particle, &, to determine the two coordinates 7(£, ¢) and 6(&, ¢). For this reason
the normal and tangential force balances are employed and are discretized using the
one-dimensional cubic splines as basis functions B;:

1 2k,
/Bi —pl+ —1 -nds—}—/B,-PGnds—/Binds—f—/B,-AFds:O, (3.4
Re We

where the integration length is defined as dS = y/ri +r?67dé in terms of the

Lagrangian variable £. On the opposite end of the flow domain, i.e. the far field,
the imposed pressure disturbance is prescribed on the right-hand side of the radial
component of the momentum balance. This is a superparametric interpolation scheme
for capturing the position of the interface that has also been used elsewhere in the
context of free surface problems (Saito & Scriven 1981; Kistler & Scriven 1983).
Details pertaining to the efficiency of B-cubic splines as basis functions in flow
problems involving free surfaces are provided in Pelekasis, Tsamopoulos & Manolis
(1992).
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For the grid construction we use and compare two different methods: the spine
method and the elliptic mesh generation technique. Both of them are described in
detail in appendix B.

The nonlinearity of the problem is treated with the Newton—Raphson method and
the following linear system of equations is solved during each iteration:

J.-dC=R, (3.5)

with R denoting the residual vector, dC the vector of the unknowns and J the
Jacobian matrix of the system. Vector dC includes the two components of the
velocity and the pressure of the liquid, the gas pressure and the shape of the bubble.
The Jacobian matrix, J, contains the finite element discretization of the momentum
and continuity equations (3.1), (3.2), where the fully implicit Euler time integration
scheme is implemented, along with the tangential and normal force balances at the
interface, equations (3.4), and the isothermal law for the pressure variation in the
bubble, equation (2.17). In this fashion, the Jacobian matrix assumes the form of
an arrow with the gas pressure and the bubble shape occupying the arrow columns.
A separate Newton—Raphson iterative procedure follows the above time integration
process within each time step, for the implementation of the elliptic mesh generation
scheme and the construction of the updated grid. Despite the fact that in previous
numerical studies of the nonlinear dynamic response of liquid drops and bridges
(Chen & Tsamopoulos 1993; Patzek et al. 1995; Notz & Basaran 1999, 2004) the
trapezoid rule is implemented in the context of a predictor—corrector time integration
scheme, in the present study we employ the fully implicit Euler method in order to
make use of its inherent damping properties against growth of spurious shape modes.
This approach by no means compromised the accuracy of the solution, as was verified
by extensive tests with varying time step and continuous monitoring of the energy.

In order to reduce computational time we have chosen to solve the problem
iteratively with the GMRES (Generalized Minimum Residual) (Saad & Schultz
1986) rather than a direct method. GMRES is an iterative method and therefore
is more effective when the matrix to be inverted does not contain zero diagonal
elements (Elman, Silvester & Wathen 2005). In the problems examined herein this
approach does not apply, and consequently the GMRES method with right or left
preconditioning is employed. The preconditioning is performed using Incomplete
Lower Upper (ILU) factorization. ILU is based on Gauss elimination in order
to eliminate certain elements of the matrix in specific positions outside the main
diagonal (Saad 1996). The implementation of ILU and GMRES is performed using
the SPARSKIT software (Saad 1996). It is the experience of the authors that the
use of GMRES reduces computational time dramatically, and indeed that was seen
to be the case in the present study as well. As an extra effort to further reduce
computational time we avoid construction and ILU factorization of the Jacobian
matrix in every time step. The number of time steps over which the Jacobian matrix
can remain unaltered without compromising the efficiency of the algorithm depends
strongly on the intensity of the shape deformation of the bubble, and was seen to
vary considerably between 1 and 500 time steps.

3.1. Benchmarks tests

In order to verify the reliability of our methodology we have performed several tests,
a few of which are presented in this subsection. As a first numerical test we perform
simulations that involve jet formation of gas-filled bubbles. These simulations are
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based on a previous study (Tsiglifis & Pelekasis 2007) that takes into account the
weak viscous effects of the boundary layer close to the bubble. In that study, Tsiglifis
and Pelekasis used elongation to produce an initial asymmetry in the flow domain,
and considered an initial internal overpressure:

Po(t=0)=(Py+ (1 +&p), (3.6)

where ¢p denotes the amplitude of the internal overpressure; in the latter study
pressure is made dimensionless via 20 /R,. They found that for a slightly elongated
bubble, S =0.99, and an internal overpressure of ez = 2 the bubble collapses when
the viscosity of the surrounding liquid is half the viscosity of water; S is a parameter
introduced in Tsiglifis & Pelekasis (2007) that signifies the intensity of the initial
elongation, and is associated with the initial shape of the bubble as follows:

S
\/S6 cos? 0 + sin’ 0

r=£,t=0)= (3.7)

When § =1 the spherical shape is recovered, whereas as S decreases the imposed
elongation among the axis of symmetry intensifies. Surface tension, o, is set to
0.0715 N m~! and viscosity u to 5 x 107* Pa s; S, &5 and Oh = ju/(pRyo)'/? are
the relevant dimensionless parameters in that study. It was thus shown that under
such conditions the amplitude of the P, Legendre mode of the bubble shape becomes
large enough during bubble compression so that two counter-propagating jets are
formed along the axis of symmetry which eventually coalesce on the equatorial
plane. In particular, the time and space scalings during the final stages of coalescence
evolve in the manner prescribed for capillary drop pinch-off. Our simulation for this
set of parameters is shown in figure 2, which has been obtained with both spine
and elliptic mesh generation techniques providing the same dynamic response. We
observe that even though the poles of the bubble move towards each other at some
point, i.e. dimensionless time ¢~ 54.15 on a time scale determined by the angular
eigenfrequency for volume pulsations wy &~ 0.6 MHz, liquid viscosity imposes its
stabilizing effect that restricts further growth of the P, mode. Eventually, shape
oscillations die-out and the bubble retracts to achieve a static spherical shape. For
better visualization all through this paper the shape of the bubble is presented in local
Cartesian coordinates, x = r cos # and y = rsin 6, that are defined on the meridional
plane.

In order to capture jet formation and bubble collapse we introduce a more intense
initial elongation disturbance, S = 0.7, that viscosity fails to stabilize for the same
liquid properties. Figure 3 illustrates the process of bubble deformation and jet
formation captured via the spine method with a grid of 600 x 160 elements along
the radial and polar directions, respectively, and a time step equal to 0.001. However,
and despite the strong indication that the poles of the bubble will coalesce on the
equator, the spine method fails to capture the last phase of collapse. This is due to
the inability of the spine method to capture extreme and complex deformations. When
the grid is constructed elliptically by using 300 x 160 elements we obtain the results
shown in figure 4. This simulation was completed in 6 weeks and was performed on
a 64 GB Linux machine with an Intel Core i7 CPU at 3.2 GHz. Clearly, the elliptic
mesh method is able to follow the intense deformations of the interface and, therefore,
to adequately describe the evolution of the phenomenon until its final stages. Liquid
viscosity is unable to restrain the growth of the P, mode which occurs in the same
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FIGURE 2. (a), (b) Temporal evolution of the shape of a gas bubble. (¢) Temporal
evolution of the average bubble radius via the breathing mode P,, and the most unstable
shape Legendre modes, P, and P,. The parameters used in the simulation are taken from
Tsiglifis & Pelekasis (2007), with Oh =40, S$=0.99 and ez =2.

manner as reported by Tsiglifis & Pelekasis (2007), only for a larger initial elongation
than in the latter study owing to the stabilizing effect of the full viscous formulation
adopted in the present study. In both cases the amplitude of P, becomes very large
during the negative phase of the pulsation, as a result of the large acceleration during
the rebound phase of the pulsation, and therefore bubble collapse eventually occurs
along the axis of symmetry. Thus, in the latter study, in agreement with previous
similar studies by Blake et al. (1997, 1999), the final stages of bubble collapse via
jet formation are characterized by the onset of a toroidal bubble and a small satellite
bubble that occupies the space at the point of impact of the two counter-propagating
jets. As will be discussed in the following section, coated microbubbles exhibit a
different collapse pattern that does not involve jet formation.

Figure 5 illustrates the grid that corresponds to the last snapshot of the spine method
(figure 3). We present a case with fewer elements (100 x 80) for better visualization
of the grid and we observe that there is an accumulation of the elements in specific
areas. Moreover, the distortion of the elements is so intense that their area becomes
negative in certain regions. The regions depicted in black in figure 5 denote such
areas. In contrast, figure 6 depicts the grid that corresponds to the last snapshot of
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FIGURE 3. (a) Temporal evolution of bubble shape and (b) temporal evolution of
breathing mode P, and shape mode decomposition with the spine method (Oh = 40,
S=0.7, eg=2).
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