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The compression-only behavior of coated microbubbles in a wall
restricted flow

Maria Vlachomitrou and Nikos Pelekasisa)

Department of Mechanical Engineering, University of Thessaly, Leoforos Athinon, Pedion Areos, 38334 Volos, Greece

ABSTRACT:
The impact that the onset of the compression-only behavior of lipid shelled contrast agents bears on their dynamic

interaction with a rigid wall under acoustic disturbances is investigated numerically in the context of axisymmetry.

Wall presence is seen to not significantly affect the onset of compression-only since it only reduces the time frame

required to trigger the effect. The standoff distance from the wall bears no significant effect on the amplitude thresh-

old except that as it is reduced, it favors asymmetry by altering the compressed buckled shape around which the bub-

ble oscillates. Above the amplitude threshold for parametric shape mode excitation, the onset of compression-only in

the vicinity of a rigid wall typically interrupts the process of entrapment by reversing the direction of motion via the

positive pressure drug that is generated as a result of the emerging concave upwards buckled shapes. Below this

amplitude threshold, symmetric shapes or asymmetric shapes that are concave downwards continue to translate

towards the wall where they perform saturated trapped pulsations around nearly spherical flattened or concave down-

wards buckled shapes. The latter shapes perform compression-only type pulsations and arise on the longer time scale

required for the destabilization of the nearly spherical initially trapped shapes. Phase diagrams are constructed identi-

fying regions of trapped pulsations, compression-only response, and microbubble collapse, in the parameter space

defined by sound amplitude and shell viscoelastic properties. VC 2024 Acoustical Society of America.
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I. INTRODUCTION

Contrast agents are gas-filled encapsulated microbub-

bles with their shells usually consisting of a lipid monolayer

or a polymeric material. Lipid shells exhibit a strain-

softening behavior when subjected to acoustic disturbances

(Tsiglifis and Pelekasis, 2008; Thomas et al., 2009; Katiyar

and Sarkar, 2011) as their area density decreases with

increasing interfacial area. This reduces the effective elastic-

ity of the protective shell thus favoring expansion (Tsiglifis

and Pelekasis, 2008; De Jong et al., 2007), especially at

large sound amplitudes. However, experimental studies (De

Jong et al., 2007; Marmottant et al., 2005) have reported

microbubble oscillations with the compression phase being

much more intense than the expansion phase, contrary to

their strain-softening nature. At certain extreme cases, the

bubble is seen to pulsate at a state of compression with

respect to its rest radius throughout the periodic cycle, thus

bypassing the expansion phase. This behavior is known in

the literature as the compression-only behavior and tends to

compromise the robustness of acoustic characterization of

shell viscoelastic properties.

To capture this dynamic pattern, researchers introduced

relatively complex shell models since pre-existing models

that accounted for shell elasticity failed to reproduce experi-

mental observations. Marmottant et al. (2005) introduced an

effective surface tension that depends highly on the surface

concentration of phospholipid molecules. According to their

model, surface tension varies from zero when the bubble is

highly compressed, in which case the shell is treated as a

buckled shell, to the value of the air-water system when the

bubble expands above a critical limit where shell rupture is

assumed. Between these two limits, an elastic state is con-

sidered where surface tension depends linearly on the area

of the shell. By considering an initially compressed state of

the bubble due to the dissolution of a certain amount of gas

in the surrounding liquid and by taking the initial radius of

the bubble to be the critical limit below which a solid state

is entered, they captured compression-only behavior. This

approach, which has been used in other studies as well

(Sarkar et al., 2005; Paul et al., 2010), neglects the bending

modulus and fails to capture the onset of buckling at a cer-

tain finite compression in the manner indicated by experi-

ments (Overlede, 2009). In a different approach, Doinikov

et al. (2009) included non-linear effects in the variation of

shell viscosity by allowing for shear-thinning behavior of

the shell. Thus, they numerically capture compression-only

behavior as reported by de Jong et al. (2007), but do not

recover the resonance frequencies of coated microbubbles

based on acoustic measurements.

In a more recent study, Pelekasis et al. (2022), hereinaf-

ter referred to as I for brevity, captured compression-only

behavior for lipid shells by assuming constant rheological

shell properties, introducing the area dilatation and bending

stiffness as well as a discrepancy between shear and dilata-

tional shell viscosities. Moreover, they adopted thea)Email: pel@uth.gr
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assumption of an initially pre-stressed compressed shell due

to gas leakage. They conducted a theoretical/numerical

study and demonstrated that this behavior is associated with

the onset of significantly compressed buckled shapes that

pulsate in the vicinity of static branches bifurcating from the

spherosymmetric configuration. They showed that an ini-

tially pre-stressed state generates a window of sound ampli-

tudes between the static buckling and the dynamic buckling

thresholds, within which parametric excitation of shape

modes that correspond to the statically bifurcating branches

is possible. In this case, and especially when the discrepancy

between the two shell viscosities is large, the dynamics

leads towards pulsation around compressed buckled shapes.

In a former study, Vlachomitrou and Pelekasis

(2021a,b) studied the dynamic response of an initially

stress-free contrast agent that is subject to acoustic distur-

bances and identified the mechanism and relevant condi-

tions that govern the trapping process in the vicinity of a

rigid wall when the two shell viscosities are equal. It was

thus found that when the sound amplitude remains smaller

than a critical value, identified as the dynamic buckling

threshold beyond which explosive shape mode excitation

and shell breakup take place (Tsiglifis and Pelekasis,

2011), the microbubble is eventually trapped at a small dis-

tance from the wall where it performs steady pulsations. In

the present study, we wish to investigate the extent to

which compression-only behavior affects the dynamic

response of contrast agents subject to acoustic disturbances

in a wall bounded flow, with emphasis on trapping by the

wall. To this end, we adopt the model considered in I and

investigate whether the proposed mechanism is affected by

the proximity of the boundary and the extent to which the

trapping process is affected by the onset of the

compression-only behavior, as this is modified by wall

presence.

In the context of coated microbubbles, migration and

trapping may play a central role in the microstreaming

effect and the potential for novel drug delivery modalities

(Marmottant and Hilgenfeldt, 2003). We should also point

out that previous experimental studies with conventional

bubbles pulsating near compliant surfaces (Shima et al.,
1989) stress the impact of standoff distance, wall stiffness,

and inertia on bubble migration with respect to the wall

and the potential for prevention of damage. In the present

study, we focus on the combined effect of standoff dis-

tance and shell viscoelastic properties on microbubble

migration while leaving the effect of wall elasticity to a

future study.

The paper is organized as follows: the problem formula-

tion is discussed in Sec. II, where the governing equations

for the liquid flow are presented along with the ones describ-

ing the encapsulated bubble. Next, in Sec. III, the numerical

methodology is briefly described as it has been presented in

detail by Vlachomitrou and Pelekasis (2021a).

Subsequently, in Sec. IV the results of the dynamic simula-

tions are presented and discussed while in Sec. V the main

conclusions of the study are summarized.

II. PROBLEM FORMULATION

We wish to extend the study presented in I to take into

account wall presence. In this fashion, we study the response

of an encapsulated microbubble of initial radius R0 to an

acoustic disturbance imposed on the far field,

P1 ¼ Pst þ Pdist ¼ Pst þ Pste cos tð Þ; (1)

where Pst, Pdist denote the dimensionless undisturbed and

disturbed pressure in the far field, respectively, and e the

amplitude of the acoustic disturbance. The imposed distur-

bance represents a standing wave with negligible spatial

modulation indicating a pressure wave with a much larger

wavelength with respect to the bubble radius and standoff

distance. Therefore, the acoustic field does not induce a pri-

mary Bjerknes force on the microbubble. Rather it triggers

volume pulsations and a translational motion of the bubble

due to the secondary Bjerknes force resulting from wall

interaction (Vlachomitrou and Pelekasis, 2021a). The undis-

turbed pressure in the far field is fixed to the standard atmo-

spheric pressure, 101.325 kPa. The microbubble is

submerged in a Newtonian liquid of density q and dynamic

viscosity l that is bounded by a rigid wall. The initial radius

R0 of the bubble is taken as the characteristic length scale,

whereas the external frequency sets the appropriate time

scale to 1=xf , with xf being the forcing frequency of the

pressure disturbance. In this context, the characteristic

velocity and pressure scales are equal to xf R0 and qx2
f R2

0,

respectively. We allow the microbubble to be initially in a

pre-stressed state since it was found to be of critical impor-

tance for the onset of the compression-only behavior,

R0 ¼ RSF þ Ud; (2)

where RSF is the radius of the stress-free spherical bubble

and Ud < 0 signifies the amount of initial radial compres-

sion imposed on the stress-free radius.

In order to obtain the governing equations, we employ

the cylindrical coordinate system, and we assume axisym-

metric variations of the bubble shape as well as the liquid

velocity and pressure. A schematic representation of the

flow under consideration is provided in Fig. 1 with f1 denot-

ing the r-coordinate of the thin shell that coats the bubble.

For the incompressible liquid that surrounds the micro-

bubble, the mass conservation and momentum equations

expressed through the continuity and Navier-Stokes equa-

tions read in dimensionless form,

r � u ¼ 0; (3)

@u

@t
þ ðu � $Þu ¼ �$Pþ 1

Re
$ � sl ;

r ¼ �PI þ 1

Re
sl ; sl ¼ $uþ $uT ; (4)

where u ¼ ður; uz; 0Þ, Re ¼ ðqxf R0
2Þ=l is the Reynolds

number of the flow that compares inertia with viscous
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forces, r; sl ; the full and deviatoric stress tensors in the sur-

rounding fluid, and I the unit tensor.

The interface is described via the Lagrangian coordinate

n (0 � n � 1) with n ¼ 0 and n ¼ 1 corresponding to the

south and north poles of the bubble, respectively. On the

gas-liquid interface the force balance is given by

�PI þ 1

Re
sl

� �
� nþ PGn

¼ �$s � s þ qn
� �þ 2km

We
n ¼ DFþ 2km

We
n; (5)

where n ¼ zn=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
n þ z2

n

q� �
er � rn=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
n þ z2

n

q� �
ez is the

unit normal vector pointing towards the surrounding fluid, PG

the gas pressure inside the bubble, $s;km the surface gradient

and mean curvature of the bubble interface, respectively, q the

transverse shear force resultant and We ¼ qx2
f R0

3=r is the

Weber number comparing inertia with capillary forces.

Following previous studies for lipid shells (Marmottant et al.,
2005; Sarkar et al., 2005; Church, 1995; Khismatullin and

Nadim, 2002) we assume a certain amount of surface tension,

r ¼ 0.051 N/m, as a measure of the internal gas exposure to

the surrounding liquid. Finally, DF is the resultant force due

to the viscoelastic properties of the membrane,

DF ¼ ksss þ k/s/ �
1

r

@

@s
ðrqÞ

� �
n

� @ss

@s
þ 1

r

@r

@s
ðss � s/Þ þ ksq

� �
e; (6)

with s, / denoting the interfacial arc length and azimuthal

directions, respectively, ss; s/ the principal stress resultants,

ks; k/ the two principal curvatures, r the cylindrical polar

coordinate, and es the tangential unit vector. In Eq. (6), q
expresses the transverse shear tension that is obtained from

a torque balance on the shell (Timoshenko and Woinowsky-

Krieger, 1959; Pozrikidis, 2001),

q ¼ KB

r

@r

@s

@

@r
ðrmsÞ � m/

� �
; KB ¼

kB

qx2
f R5

0

; (7)

with ms;m/ being the principal bending moments, kB the bend-

ing modulus, and KB signifying the relative importance of

bending with respect to inertia. The principal membrane ten-

sions consist of an elastic, sel, and a viscous component, sv,

ss ¼ ss;el þ ss;v ; s/ ¼ s/;el þ s/;v: (8)

For the elastic part, since we consider lipid shells, we adopt

the Mooney Rivlin (MR) constitutive law (Barthes-Biesel

et al., 2002) with the degree of softness b set to zero

(Barthes-Biesel et al., 2002; Tsiglifis and Pelekasis, 2008),

sMR
s;el ¼

G

3ksku
k2

s �
1

kskuð Þ2

 !
1þ b k2

u � 1
	 
h i

; (9a)

sMR
/;el ¼

G

3ksku
k2

/ �
1

kskuð Þ2

 !
1þ b k2

s � 1
	 
h i

; (9b)

where G ¼ v=ðqx2
f R3

0Þ signifies the relative importance of

shell dilatation with respect to inertia and ks, ku correspond

to the principal extension ratios based on the stress-free

state,

ks ¼
snðtÞ
snð0Þ

; k/ ¼
rðtÞ
rð0Þ ; sn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
n þ z2

n

q
: (10)

For the viscous part, the dilatational viscosity ls and the

shear viscosity lsh of the shell are treated separately. More

specifically, the viscous components of the membrane ten-

sions read as

sv
s ¼

1

Res
þ 1

Resh

� �
1

ks

@ks

@t
þ 1

Res
� 1

Resh

� �
1

ku

@ku

@t
; (11a)

sv
/ ¼

1

Res
þ 1

Resh

� �
1

k/

@k/

@t
þ 1

Res
� 1

Resh

� �
1

ks

@ks

@t
; (11b)

with Res ¼ qxf R
3
0=ls and Resh ¼ qxf R

3
0=lsh comparing

inertia forces with the viscous dilatational and shear forces

of the shell, respectively.

The continuity of the liquid and shell velocities is, also,

applied on the interface,

u ¼ Drs

Dt
; (12)

with rs ¼ rer þ zez corresponding to the position vector of a

particle at the interface. Initially, the microbubble is taken

to be spherical, surrounded by a fluid at static equilibrium.

The initial axial position of the center of volume of the bub-

ble with respect to the wall, zc0, is the standoff distance and

its impact on the dynamics will be investigated in the fol-

lowing. The dimensionless pressure, PG, inside the bubble at

static equilibrium is related to the dimensionless pressure,

Pst, in the far field as follows:

PG t ¼ 0ð Þ ¼ Pst þ
2

We
þ 2selðt ¼ 0Þ: (13)

FIG. 1. (Color online) A contrast agent in a wall restricted flow.
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The extra elastic term in the previous equation corresponds

to the initial stress state of the shell due to the external over-

pressure that arises as a result of gradual gas leakage

through the shell before the application of the acoustic dis-

turbance. By assuming uniform gas pressure inside the bub-

ble due to negligible density and kinematic viscosity and the

fact that heat transfer between the bubble and the surround-

ing liquid occurs extremely fast compared to the time scale

of the problem, bubble oscillations are characterized as

nearly isothermal, and the bubble pressure is given by

PG t ¼ 0ð ÞVc
G t ¼ 0ð Þ ¼ PG tð ÞVc

G tð Þ ¼ const:; (14)

with VG denoting the dimensionless instantaneous volume

of the bubble, VGðt ¼ 0Þ ¼ 4p=3 the initial volume of the

bubble, and c the polytropic constant set to 1.07. The latter

value is also close to the ratio of specific heats of certain

ideal gases that are carried by known contrast agents and

undergo adiabatic pulsations during insonation (Tsiglifis and

Pelekasis, 2008; Marmottant et al., 2005; Sarkar et al.,
2005; Vlachomitrou and Pelekasis, 2021a,b).

III. NUMERICAL METHODOLOGY

The numerical method employed in this study as well

as the code validation with appropriate benchmark tests

have been presented in detail in Vlachomitrou and Pelekasis

(2021a). In the latter study, the dilatational and shear shell

viscosities were treated as equal and the microbubble as ini-

tially stress-free, whereas in the present study, the two vis-

cosities are taken as different parameters while allowing for

an initially pre-stressed state as in I where an unbounded

flow is considered. However, these extra considerations in

the problem formulation do not affect the numerical meth-

odology. Therefore, following the study that concerns a wall

restricted flow, the numerical solution is performed via the

Galerkin Finite Element Methodology by employing bi-

quadratic and bi-linear Lagrangian basis functions to discre-

tize the velocity and the pressure of the liquid, respectively,

in conjunction with one-dimensional (1D) cubic splines for

the bubble interface. Time integration is implemented via

the fully implicit Euler scheme, whereas the non-linearity

of the problem is treated with the Newton-Raphson method.

The final set of the linearized equations is solved iteratively

with the Generalized Minimal Residual (GMRES) method.

As an overall numerical procedure, at each time step

two separate Newton-Raphson procedures are applied. In

the first procedure, the governing equations presented in

Sec. II are solved simultaneously to obtain the velocity and

pressure fields along with the shape of the interface. A sec-

ond Newton-Raphson iterative procedure follows, in order

to implement the elliptic mesh generation technique and to

adjust the grid to the interfacial shape, which is already

known from the first procedure and is imposed as an essen-

tial condition. According to the elliptic technique, every

point (r,z) of the physical domain in a particular time instant

is mapped onto a grid point with coordinates (g,n):

ðr; z; tÞ ! ðg; n; tÞ. The coordinates of the grid points in the

physical domain are obtained by solving the following set of

partial differential equations (Tsiveriotis and Brown, 1992;

Dimakopoulos and Tsamopoulos, 2003),

$ � e1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
n þ z2

n

r2
g þ z2

g

s
þ 1� e1

0
@

1
A$n

2
4

3
5 ¼ 0; (15)

$ � $g ¼ 0; (16)

where rn; rg; zn; zg are the partial derivatives of the physical

coordinates r, z with respect to the computational coordi-

nates n, g. The previous equations are discretized using the

biquadratic Lagrangian basis functions. The first equation

generates the g-curves of the computational domain that

intersect the interface almost orthogonally, whereas the

second equation produces the n-curves, which are nearly

parallel to the interface. In the first equation, e1 is an empiri-

cal parameter defined by trial and error that controls the

extent of mesh smoothness versus its orthogonality. This

parameter ranges between 0 and 1 and in our case is set to

0.1. As far as the boundary conditions are concerned, in any

boundary where one of the coordinates is known, the distri-

bution of corresponding values is imposed as an essential

boundary condition. When it is unknown, the integral terms

that the divergence theorem produces in the discretized

form of the grid equations are omitted to weakly impose the

orthogonality of the grid lines in these boundaries. The dis-

cretized form of the governing equations, details about the

implementation of the Newton-Raphson and the GMRES

methods, as well as details on the implementation of the

elliptic mesh generation technique can be found in

Vlachomitrou and Pelekasis (2021a).

IV. RESULTS AND DISCUSSION

We consider a lipid shelled contrast agent that is charac-

terized by an area dilatational modulus v¼ 0.24 N/m, bending

modulus kB ¼ 3� 10�14Nm; shell thickness d¼ 1 nm, and

shear shell viscosity lsh¼ 60� 10�9 kg/s. The microbubble

has a stress-free radius RSF¼ 3.6 lm and due to gas leakage

is at an initially compressed state with Ud¼ –0.46 lm. Thus,

the initial radius of the bubble, R0 ¼ 3:14lm, is slightly

above the critical threshold for static buckling since it corre-

sponds to a radial compression of R0/RSF � 0.872 when the

critical compression for buckling to occur is RB/RSF � 0.87,

pertaining to a bifurcating branch emerging at a critical

amplitude ecr � 0.04 (Pelekasis et al., 2022). In this way, we

ensure that, in the absence of geometric imperfections, any

shape deformations will only be excited acoustically. In I, the

phase diagram for the previously mentioned parameters was

constructed in the absence of an interacting wall, as a func-

tion of the ratio of shear to dilatational viscosity of the shell,

lsh/ls, both in the presence and in the absence of initial pre-

stress when the external acoustic frequency was set to

f¼ 1.7 MHz [see Figs. 2(a) and 2(b)]. The phase diagrams

were obtained by performing Floquet type stability analysis

on the spherosymmetric pulsations of an acoustically excited
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contrast agent allowing for small axisymmetric disturbances

in an inviscid and unbounded flow and were complemented

by simulations. The analysis followed the study by Tsiglifis

and Pelekasis (2011) with the exception of shell viscosity that

consisted of shear and dilatational components with a varying

degree of disparity, as opposed to being set as equal in the lat-

ter study.

In this context, the lines Pn throughout Fig. 2 illustrate

the amplitude thresholds for the parametric excitation of

the nth Legendre mode within a time interval of 30 periods

of the forcing and for the dynamic buckling to occur.

Dynamic buckling (D.B.) refers to a Rayleigh-Taylor type

instability that occurs very fast (within ten periods of the

forcing) during the rebound phase that follows maximum

volume compression with the rapid growth of many shape

modes that leads to loss of shell cohesion and breakup of

the microbubble (Tsiglifis and Pelekasis, 2011). Upon

close inspection of Fig. 2(a), it is clear that varying the dis-

crepancy between shear and dilatational shell viscosity for

a vanishing amount of prestress merely reduces the thresh-

old for parametric mode excitation and dynamic buckling

to occur. In the same context, the static buckling thresholds

in the absence of prestress have been added as horizontal

lines since they do not depend on shell viscosity. Each hor-

izontal line corresponds to the critical threshold for a dif-

ferent bifurcating branch from the main spherosymmetric

solution family that is dominated by the nth Legendre

mode. The complete bifurcation diagram for this case is

also given in I.

When an initial amount of prestress is present the phase

diagram is shown in Fig. 2(b). Numerical simulations per-

formed in I in the absence of a nearby wall revealed that the

compression-only behavior is possible, within a window in

the sound amplitude that is established above the amplitude

threshold for static growth of shape modes. More specifi-

cally, it occupies the amplitude interval above the threshold

for parametric excitation of the shape mode that character-

izes a certain bifurcating branch and below the onset of

dynamic buckling, both identified in Fig. 2(b). In particular,

it was seen that this behavior is associated with the onset of

significantly compressed buckled shapes that pulsate in the

vicinity of the static non-spherical branches. It was also ver-

ified by numerical simulations, that shells with a small shear

viscosity compared to the dilatational one facilitate the

transfer of energy from volume pulsation to shape modes

thus providing a distinctly lower amplitude threshold, in

comparison with higher modes, for parametric excitation of

shape modes that correspond to the statically bifurcating

branches.

Figure 2(c) presents a complete parametric study, based

on numerical simulations, that complements the phase dia-

gram provided in Fig. 2(b) by providing the domain in phase

FIG. 2. (Color online) Phase diagram with increasing lsh/ls ratio for a lipid coated microbubble (RSF¼ 3.6 lm, ls¼ 60� 10�9 kg/s, v¼ 0.24 N/m, kB

¼ 3� 10�14 N�m, d¼ 1 nm) subject to (a) no initial prestress, (b and c) an initial prestress of Ud ¼ –0.46 lm, and an acoustic disturbance of f¼ 1.7 MHz; (c)

includes the region where compression-only (C.O area) is exhibited in the absence of a wall, according to I.
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space for which compression-only behavior is captured

numerically, it is marked as C.O. area, in the absence of a

nearby wall. Clearly, the latter region in parameter space

correlates well with the window defined by the two

previously-mentioned amplitude thresholds for parametric

instability and dynamic buckling. Such a response pattern

could not be recovered in the absence of prestress, Fig. 2(a),

due to the increased buckling amplitude threshold that

approaches the parametric and dynamic buckling thresholds.

In Fig. 2(c), the term “collapse” is used to describe either

the collapse of the bubble via dynamic buckling or via direct

contact between the two poles in the manner presented in I.

Below the lower limit of the C.O. area, no excitation of

shape modes occurs and, thus, the bubble keeps performing

spherosymmetric pulsations.

The same type of coated microbubble was employed by

Vlachomitrou and Pelekasis (2021a,b) in their numerical

study of trapped pulsations near a rigid wall, in the absence

of initial prestress for identical shear and dilatational shell

viscosities. It was found that wall presence suppresses

excessive growth of the dominant shape modes predicted by

parametric excitation stability analysis, by triggering the

onset of a large number of asymmetric modes. In this

fashion, trapped pulsations were captured at a small distance

from the wall, on the order of a few tenths of nm. During

this state, the bubble performs saturated volume pulsations,

with its shape varying between an almost spherical shape at

maximum expansion and an oblate shape with a flattened

shell portion near the pole that faces the wall at maximum

compression, e.g., see Figs. 3 and 5 from Vlachomitrou and

Pelekasis (2021b) and panels in Fig. 7 from the present

study. For sound amplitudes close to the prediction for

dynamic buckling to occur, rapid growth of shape modes

was evident leading to loss of coherence of the shell and

breakup.

In the present study, it is of interest to explore the man-

ner in which the compression-only mechanism identified in

I is affected by wall presence and, moreover, to determine

whether and how this effect impacts the trapping procedure

studied by Vlachomitrou and Pelekasis (2021a,b). As in I,

we consider that the “compression-only” behavior is trig-

gered in time as soon as we capture oscillations where the

amplitude of compression below the equilibrium radius is

much greater than the amplitude of expansion above it.

In this context, in Figs. 3 and 4 we contrast the numeri-

cal simulations for a wall restricted and an unbounded flow

FIG. 3. (Color online) Temporal evo-

lution of (a) and (b) bubble shape and

(c) and (d) the volume and shape mode

pulsation, for a lipid coated microbub-

ble (RSF¼ 3.6 lm, ls¼ 60� 10�9 kg/s,

v¼ 0.24 N/m, kB ¼ 3� 10�14 N m,

d¼ 1 nm) subject to an acoustic distur-

bance with f¼ 1.7 MHz and e¼ 0.3 for

an initial prestress, Ud¼ –0.46 lm and

lsh/ls¼ 0.1 for (a) and (c) a wall

restricted flow when the initial distance

from the wall is set to zc0¼ 4 and (b)

and (d) an unbounded flow.
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for two different ratios of shear to dilatational shell viscos-

ity, lsh/ls, respectively. In particular, the microbubble

depicted in Fig. 3 (lsh/ls¼ 0.1) performs oscillations around

a symmetric shape when an unbounded flow is considered,

Figs. 3(b) and 3(d), whereas the presence of the wall drives

the oscillation towards the energetically favored P3 asym-

metric brunch, manifested in the asymmetric shape pulsa-

tions captured in Figs. 3(a) and 3(c). However, in both

cases, the shape is still dominated by the shape modes P2,

P3, and P4 that correspond to the static bifurcating branches,

with P3 clearly emerging as a dominant mode when the wall

is present. On the other hand, in the case presented in Fig. 4

(lsh/ls¼ 0.3), wall presence does not significantly affect the

compressed buckled shape around which the bubble oscil-

lates, and it simply reduces the number of periods needed

for the onset of the phenomenon.

Throughout Sec. IV, the interfacial shape in the

unbounded flow is illustrated in terms of the Cartesian coor-

dinates zB ¼ rsph cos h and x ¼ rsph sin h where rsph, h, u,

signify the spherical radius, the azimuthal angle, and the

polar angle, respectively. Typically, the ðx; zBÞ plane is

obtained by joining the u¼ 0 and u¼p surfaces and, thus,

the zB coordinate is aligned with the axis of symmetry with

its origin located at the geometric center of the bubble.

Axial coordinate z is used in the graphs illustrating the bub-

ble shape as it interacts with the wall, with its origin lying at

the wall and zc0 denoting the initial distance of the geomet-

ric center of the bubble from the wall, i.e., the standoff dis-

tance. In the context of axisymmetry, the interface is

symmetric in the (x, zB) plane with respect to the zB axis for

an unbounded flow, whereas in the (x, z) plane, it is symmet-

ric with respect to the z-axis for a wall restricted flow. In all

graphs, time is made dimensionless with the characteristic

time scale, 1/xf, equal to 0.0936ls, whereas the mode

amplitude is made dimensionless using the initial bubble

radius R0 ¼ 3:14 lm.

An important aspect of microbubble migration in the

previous simulations pertains to the reversion of direction

exhibited in Fig. 3(c) at the onset of the compression-only

behavior, at which point asymmetric buckled shapes emerge

as a result of parametric mode excitation. Such a pattern

was not obtained in cases for which symmetric shapes are

obtained as can be gleaned from Fig. 4. In fact, Fig. 4(c)

illustrates the persistence of bubble migration towards the

wall, despite the onset of compression-only, as long as the

emerging buckled shapes remain symmetric. However, as

FIG. 4. (Color online) Temporal evo-

lution of (a) and (b) bubble shape and

(c) and (d) the volume and shape mode

pulsation, for a lipid coated microbub-

ble (RSF¼ 3.6 lm, ls¼ 60� 10�9 kg/s,

v¼ 0.24 N/m, kB¼ 3� 10�14 N m,

d¼ 1 nm) subject to an acoustic distur-

bance with f¼ 1.7 MHz and e¼ 0.7 for

an initial prestress, Ud¼ –0.46 lm and

lsh/ls¼ 0.3 for (a) and (c) a wall

restricted flow when the initial distance

from the wall is set to zc0¼ 4 and (b)

and (d) an unbounded flow.
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will be seen in the following, this pattern will be modified as

the bubble translates towards the wall in which case asym-

metric shapes will arise.

In order to assess the effect of wall distance a series of

simulations is performed with decreasing standoff distance

starting from the case portrayed in Figs. 4(a) and 4(c). It is

thus seen, as illustrated in Figs. 5 and 6, that wall proximity

does not significantly affect the amplitude threshold for the

onset of compression-only since it is associated with the

onset of parametric shape mode excitation. However, reduc-

ing the standoff distance reduces the time scale required for

this dynamic response pattern to emerge, provided the

amplitude threshold is exceeded while favoring the growth

of asymmetric, pulsating buckled shapes. This becomes evi-

dent upon comparing Figs. 4(a) and 4(c), with Figs. 6(a) and

6(b) and 5(b) and 5(d), which correspond to the same

parameter range but to a gradually decreasing initial dis-

tance from the wall. In fact, in cases where parametric mode

excitation favors the growth of symmetric shape modes in

the early stages of the phenomenon, in the manner depicted

in Figs. 4, 5, and 6, as the distance from the wall is reduced,

due to bubble migration towards the wall, asymmetric

modes prevail and the shape around which the bubble oscil-

lates becomes asymmetric, Figs. 5(b) and 6(a). This effect is

not captured in Figs. 4(b) and 4(d) due to the large initial

distance and the resulting slow evolution of the dynamics,

but it is expected to arise at a later stage of the simulation as

clearly illustrated in Fig. 6(b) where, despite the reduced ini-

tial distance (zc0¼ 2.5 instead of 2), the symmetric modes

P2 and P4 still emerge first. In this context, we clearly cap-

ture transition from the type of symmetric buckled shape

shown in Fig. 4 to the asymmetric shape of Fig. 5(b), see the

shapes and shape mode evolution captured in Fig. 6.

However, as the standoff distance approaches the wall the

asymmetric P3 mode starts growing first and becomes domi-

nant, leading to the asymmetric shapes shown in Fig. 5.

Therefore, as an overall pattern, reduction of the stand-off

distance does not bear a significant impact on the amplitude

threshold but rather accelerates the onset of asymmetric

modes.

As was already pointed out previously, a very important

aspect of the response of contrast agents to acoustic

FIG. 5. (Color online) Temporal evo-

lution of (a) and (b) bubble shape and

(c) and (d) the volume, the transla-

tional mode P1 and shape mode pulsa-

tion, for a lipid coated microbubble

(RSF¼ 3.6lm, ls¼ 60� 10�9 kg/s,

v¼ 0.24 N/m, kB ¼ 3 � 10�14 N m,

d¼ 1 nm) subject to an acoustic distur-

bance with f¼ 1.7 MHz and an initial

prestress, Ud¼ –0.46 lm when, (a) and

(c) lsh/ls ¼ 0.1 and e¼ 0.3 and (b) and

(d) lsh/ls¼ 0.3 and e¼ 0.7, for a wall

restricted flow with the initial distance

from the wall set to zc0¼ 2.
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disturbances in the presence of a wall, pertains to their trans-

lational motion and their possible entrapment at the wall. As

discussed in Vlachomitrou and Pelekasis (2021b), it is possi-

ble for contrast agents to get trapped at a small distance

from the wall where they perform steady pulsations as long

as the sound amplitude remains smaller than the critical

threshold for parametric shape mode excitation. However,

the latter study assumed equal values for the shear and dila-

tational shell viscosity and considered initially stress-free

contrast agents. As will be demonstrated in the following

discussion, the trapping procedure is indeed strongly

affected by the onset of compression-only behavior. In fact,

the shape acquired by the bubble as it oscillates may not

only interrupt the trapping procedure but also reverse the

translational motion with the microbubble gradually moving

in the opposite direction. This is clearly demonstrated in

Figs. 3–6, by inspecting the emerging shapes and the tempo-

ral evolution of the translational mode P1 with its amplitude

being associated with the instantaneous center of mass zcðtÞ
via aP1

ðtÞ ¼ zc0 � zcðtÞ. The positive gradient of aP1
ðtÞ,

averaged over a period of the pulsation until the onset of the

steady compressed pulsations, denotes a translational

motion towards the wall as a result of the secondary

Bjerknes forces, in the manner described in Vlachomitrou

and Pelekasis (2021a). It is clear from Figs. 3–6 that the

translation of the bubble towards the wall continues even

after the onset of the compression-only behavior as long as

the shape of the bubble remains symmetric. In particular, as

illustrated in Figs. 5(d) and 6(b), symmetric modes dominate

when 40 < t <100 and 40 < t< 200, respectively, and in

this time interval the amplitude of P1 increases with time.

However, the motion of the bubble towards the wall is

halted when the asymmetric mode P3 develops, as the nega-

tive gradient of the translational mode P1 indicates, with the

bubble departure from the wall gradually increasing. Clearly

then, the same transition from symmetric to asymmetric

shapes as the bubble approaches the wall and its impact on

the translational mode P1 is expected to emerge in Fig.

4(c), albeit at a much later stage of the bubble motion in

comparison with the time interval captured by the simula-

tion in Fig. 4(c).

A different behavior is captured for a smaller discrep-

ancy between the two shell viscosities as illustrated in Fig.

7. In particular, the parameter set employed in Figs.

7(a)–7(c) lies near the amplitude threshold of the envelope

of the phase diagram that separates the compression-only

region from trapped pulsations in Fig. 9(b). As a result, trap-

ping occurs on the same time scale as parametric growth of

shape modes and the bubble reaches the wall on a relatively

short time interval, on the order of 100 periods of the forc-

ing, since the increased sound amplitude (e¼ 1) increases

the translational velocity. The lubrication pressure in the

region between the shell and the wall instigates shell buck-

ling, generating the concave downward shapes. Due to the

highly deformed and compressed shapes that the bubble

acquires as it pulsates, Figs. 7(a) and 7(b), it exhibits

compression-only behavior but eventually, t � 190, it is

trapped near the wall where it performs steady pulsations as

shown in Fig. 7(c). In this case, the shape around which the

bubble oscillates is also asymmetric, but the marked differ-

ence with the cases shown in Figs. 3–6 is that the shape

remains concave downwards which does not allow for an

upward motion to develop, contrary to the concave up

shapes obtained in Figs. 3, 5, and 6.

A more typical case of wall trapping is illustrated in

Figs. 7(d)–7(f) for which compression-only behavior does

not spontaneously emerge owing to the choice of viscoelas-

tic shell parameters and sound amplitude; see also the rele-

vant phase diagram provided in Fig. 9. Thus, the bubble is

seen to constantly migrate towards the wall where it

FIG. 6. (Color online) Temporal evolu-

tion of (a) bubble shape and (b) the vol-

ume, the translational mode P1 and

shape mode pulsation, for a lipid coated

microbubble (RSF¼ 3.6lm, ls¼ 60

� 10�9kg/s, v¼ 0.24 N/m, kB¼ 3

� 10�14 N m, d¼ 1 nm) subject to an

acoustic disturbance with f¼ 1.7 MHz

and an initial prestress, Ud¼ –0.46 lm

when, lsh/ls¼ 0.3 and e¼ 0.7, for a

wall restricted flow with the initial dis-

tance from the wall set to zc0¼ 2.5.
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performs saturated pulsations with the nearly spherical

shape reported by Vlachomitrou and Pelekasis (2021b).

Furthermore, as can be gleaned upon inspection of Fig. 7(e),

the time scale required for the bubble to reach the wall and

commence trapped saturated pulsations is in accord with

the predictions Vlachomitrou and Pelekasis (2021a,b),

i.e., ttrapping � O(1/e)2zc0
2, in the context of secondary

Bjerknes forces; see also Fig. 8(b) in Vlachomitrou and

FIG. 7. (Color online) Temporal evolu-

tion of (a), (b), and (d) bubble shape as

the bubble approaches the wall and dur-

ing trapped pulsations, and (c) and (e)

the volume, the translational mode P1

and shape mode pulsation, for a lipid

coated microbubble (RSF¼ 3.6 lm,

ls¼ 60 � 10�9kg/s, v¼ 0.24 N/m,

kB¼ 3 � 10�14 N m, d¼ 1 nm) subject

to an acoustic disturbance with

f¼ 1.7 MHz, for an initial prestress

Ud¼ –0.46lm, when the initial distance

from the wall is set to zc0¼ 2; (a), (b),

and (c) e¼ 1 and lsh/ls¼ 0.5, (d), (e),

and (f) e¼ 0.8 and lsh/ls¼ 1.
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Pelekasis (2021b). These predictions remain relevant to the

extent that the bubble shape remains spherical, as will be the

case despite the presence of prestress and the discrepancy

between shear and dilatational viscosity, as long as

compression-only behavior is not yet established. However,

this will be the case, as can be gleaned from Fig. 7(e), which

illustrates the gradual destabilization of the nearly spherical

flattened shapes performing trapped pulsations in Fig. 7(d).

This occurs in response to the lubrication pressure that

develops in the region between the microbubble and the

wall and instigates shell buckling, as expected for a sound

amplitude above the static buckling threshold of the pre-

stressed bubble interrogated in Figs. 7(d)–7(f); see also Figs.

2(b), 2(c), and 9(b) in the following. The microbubble thus

exhibits concave downwards, significantly compressed

buckled shapes around which it performs trapped pulsations,

Fig. 7(f).

The pattern of asymmetric concave up shapes triggering

translational motion away from the wall was a recurring

theme in this study, as can be gleaned by cross-inspection of

the time evolution of bubble shapes and the P1 mode in

Figs. 3–6. This is attributed to the balance between pressure

and viscous forces on the microbubble surface. During the

initial stages of the translational motion, the shape of the

interface is nearly spherical and the secondary Bjerknes

force pushes the bubble towards the wall with the viscous

drag counterbalancing pressure drag, thus giving rise to a

steady speed that increases quadratically with the sound

amplitude e; see also the analysis in Vlachomitrou and

Pelekasis (2021a). Once compression-only behavior is

established—characterized by oscillation around com-

pressed and deformed buckled shapes—wall presence

enhances the growth of asymmetric modes with P3 being the

dominant one. Typically, concave upward shapes arise sig-

nifying the increased pressure generated in the region

between the protective shell and the wall. As a result, the

force due to pressure drag is reversed acquiring a positive

average value during a period of the forcing, pointing away

from the wall. This pattern is clearly illustrated in Figs. 8(a)

and 8(c) showing the time evolution of the mean forces due

to pressure, FP,av, and viscous dissipation, FV,av, averaged

over a period of the forcing, pertaining to simulations char-

acterized by intense growth of the asymmetric P3 mode. On

the contrary when symmetric or concave downward shapes

prevail, as is the case in Figs. 4 and 7, bubble-wall attraction

persists due to the negative pressure drag, which points

toward the wall until trapping takes place, see also Figs.

8(b) and 8(d). In all cases viscous dissipation counterbalan-

ces pressure, generating a nearly constant speed away from

or towards the wall, depending on the bubble shape, with

the former situation typically associated with the onset of

compression-only response pattern characterized by pulsa-

tions around asymmetric concave up shapes. The latter situ-

ation arises for a sound amplitude at or below the threshold

for parametric shape mode excitation, in which case the

compression-only type response pattern emerges on the

FIG. 8. (Color online) Time evolution of the mean force on the microbubble due to pressure, FP,av, and viscous drag FV,av, averaged over a period of the

forcing, pertaining to the simulations presented in (a) Figs. 3(a) and 3(c), (b) Figs. 4(a) and 4(c), (c) Figs. 5(b) and 5(d), and (d) Figs. 7(d)–7(f).
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much longer time scale required for the nearly spherical

trapped bubble to be destabilized and buckle, thus giving

rise to the concave down shapes obtained in Fig. 7.

When wall presence is taken into account, an extensive

parametric study was performed based on shell viscosity

ratio and acoustic amplitude in order to construct phase dia-

grams describing the dynamic response pattern of coated

microbubbles. Figure 9(a) typically summarizes the results

obtained in Vlachomitrou and Pelekasis (2021b) for an ini-

tial stress-free state, enhanced with a parametric study based

on the lsh/ls ratio. It is provided in order to facilitate com-

parison with cases examined in this paper for which pre-

stress is present, also for fixed standoff distance zc0¼ 4, as

well as to summarize the complete behavior of coated

microbubbles in the presence of a wall. The area identified

as “C.O. area” in Fig. 9(b) was recovered when a certain

amount of prestress was present, containing the region in the

parameter space defined by the sound amplitude and shell

viscosity ratio for which compression-only behavior was

captured within 30 periods of the forcing. The simulations

performed in the present study demonstrate that the mecha-

nism identified in I for the onset of the compression-only

behavior is not affected significantly by wall presence in the

sense that it is still triggered by the same set of parameters

as in the case of the unbounded flow, see “C.O. area” in Fig.

2(c). The latter region is very similar to the one identified as

C.O. area for a dimensionless standoff distance zc0¼ 4 in

Fig. 9(b) since they are both associated with parametric

shape mode excitation. For the same reason, simulations for

different initial distances or larger time frame for the onset

of compression-only behavior, reveal that the thresholds of

the compression-only region are mildly affected. However,

once we operate in the appropriate parameter range for

shape mode excitation, as illustrated by the results presented

in Figs. 3–7 pertaining to wall bounded flow, wall presence

accelerates the onset of the phenomenon and alters the shape

around which the bubble oscillates, favoring asymmetric

shapes that are concave upwards. Furthermore, as can be

gleaned upon comparing Figs. 9(a) and 9(b), when the

compression-only behavior is triggered in the previous

amplitude range entrapment of the bubble by the wall is

often prevented due to the highly compressed and asymmet-

ric deformed shapes that typically emerge. Asymmetric con-

cave upward shapes reverse the bubble motion away from

the wall, as illustrated in Figs. 3–6, due to the positive pres-

sure drag as shown in Fig. 8, thus preventing trapping from

taking place. For sound amplitudes that lie below the “C.O.

area” in Fig. 9(c), the bubble performs nearly spherosym-

metric pulsations as it moves towards the wall due to the

secondary Bjerknes force. Then, the time that the bubble

needs to reach the wall is not affected either by the initial

prestress or the shear shell viscosity and it varies with the

square of the standoff distance (t � z2
c0) and the inverse of

the square of the sound amplitude (t � 1=e2), exactly in the

same manner identified in Vlachomitrou and Pelekasis

(2021a,b). In the latter time frame, it is eventually trapped at

the wall where it performs steady pulsations with nearly

spherical flattened shapes; see also Figs. 7(d) and 7(f).

However, on a longer time scale, the flattened shapes are

destabilized, and significantly compressed concave down

shapes emerge that also perform trapped saturated pulsa-

tions. Therefore, and provided enough time is available,

below the amplitude threshold for parametric shape mode

excitation the microbubble is trapped at the wall where it

performs saturated compression-only pulsations that are

characterized by concave down shapes.

V. CONCLUSIONS

We numerically investigate the impact of wall interac-

tion on the onset of the compression-only behavior in the

oscillations of a coated microbubble subject to acoustic dis-

turbances. This is a continuation of a previous study by

Pelekasis et al. (2022) that identified the mechanism that

triggers the onset of the compression-only behavior which is

associated with the onset of significantly compressed shapes

that pulsate in the vicinity of static branches bifurcating

from the spherosymmetric configuration. They showed that

when the microbubble is initially pre-stressed, and

FIG. 9. (Color online) Mapping of the dynamic response of a contrast agent to an acoustic disturbance in a wall-bounded flow for (a) an initial stress-free

state and (b) for an initially pre-stressed state of a lipid coated microbubble with increasing lsh/ls ratio subject to an acoustic frequency of f¼ 1.7 MHz, with

(zc0¼ 4) wall presence; Ud¼ –0.46 lm; RSF¼3.6 lm, ls¼ 60� 10�9 kg/s, v¼ 0.24 N/m, kB¼ 3� 10�14 N m, d¼ 1 nm. The bounded area labeled “C.O.

area” pertains to typical compression-only behavior obtained for sound amplitudes above the threshold for parametric shape mode excitation.
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especially when the discrepancy between the two shell vis-

cosities is large, the system dynamics lead toward pulsations

around the static buckled shapes. In the present study, it is

shown that this mechanism remains essentially unaffected

by the wall presence or the initial distance from the wall in

the sense that the wall only reduces the time required to trig-

ger the effect as long as we remain within the parameter

window for parametric shape mode excitation. However, it

alters the compressed buckled shape around which the bub-

ble oscillates as it usually favors asymmetry, especially as

the distance from the wall is reduced.

We have also investigated the translational motion of

contrast agents after the onset of the compression-only

behavior to determine whether and how it affects the trap-

ping procedure. In previous studies, Vlachomitrou and

Pelekasis (2021a,b) considered initially stress-free contrast

agents and identified the mechanism and the conditions that

facilitate the trapping procedure when the two shell viscosi-

ties are equal. They found that for sound amplitudes smaller

than the critical for dynamic buckling and loss of shell cohe-

sion, the microbubble eventually gets trapped at a small dis-

tance from the wall where it performs saturated oscillations

characterized by nearly spherical flattened shapes. In the

present study, it is shown that above the amplitude threshold

for parametric shape mode excitation, the compression-only

behavior typically interrupts entrapment by favoring the

onset of concave upward shapes and triggering migration in

the opposite direction due to the positive pressure drag that

develops. In fact, the direction of motion upon the onset of

the compression-only behavior depends highly on the com-

pressed buckled shape around which the bubble oscillates.

Below the latter amplitude threshold and above the static

buckling threshold, symmetric shapes or asymmetric shapes

that are concave down emerge that continue to translate

towards the wall due to the negative pressure drag.

Eventually, saturated trapped pulsations are established and

characterized initially by flattened nearly spherical shapes,

but on a longer time scale by concave down shapes that

exhibit the compression-only response pattern.

Carrying out an extensive parametric study, we have

constructed phase diagrams (Fig. 9) that summarize the

response of contrast agents to acoustic disturbances in the

vicinity of a rigid wall. It is thus shown that when the bubble

is initially pre-stressed the onset of compression-only behav-

ior shrinks the region in phase space that allows for entrap-

ment of the bubble at a nearby wall. This is an aspect of the

response pattern that needs to be further investigated for

varying wall properties as it impacts the potential of coated

microbubbles to generate microstreaming patterns on the

wall, thus facilitating novel drug delivery modalities, such

as sonoporation, or even acoustic cleaning protocols.

ACKNOWLEDGMENTS

This research has been carried out within the framework

of the invitation “Expression of interest for holders of doctoral

diploma, for scholarship for postdoctoral research” of the

University of Thessaly which is implemented by the

University of Thessaly and is funded by the “Stavros Niarchos

Foundation.” Acknowledgment should also be given to the

Greek Ministry of Education for financial support of this work

through the project “ARISTEIA” in its early stages.

Barthes-Biesel, D., Diaz, A., and Dhenin, E. (2002). “Effect of constitutive

laws for two-dimensional membranes on flow-induced capsule

deformation,” J. Fluid Mech. 460, 211–222.

Church, C. C. (1995). “The effects of an elastic solid surface layer on the

radial pulsations of gas bubbles,” J. Acoust. Soc. Am. 97(3), 1510–1521.

De Jong, N., Emmer, M., Chin, C. T., Bouakaz, A., Mastik, F., Lohse, D.,

and Versluis, M. (2007). “ ‘Compression-only’ behavior of phospholipid-

coated contrast bubbles,” Ultrasound Med. Biol. 33(4), 653–656.

Dimakopoulos, Y., and Tsamopoulos, J. (2003). “A quasi-elliptic transfor-

mation for moving boundary problems with large anisotropic

deformations,” J. Comput. Phys. 192(2), 494–522.

Doinikov, A. A., Haac, J. F., and Dayton, P. A. (2009). “Modeling of non-

linear viscous stress in encapsulating shells of lipid coated contrast agent

microbubbles,” Ultrasonics 49(2), 269–275.

Katiyar, A., and Sarkar, K. (2011). “Excitation threshold for subharmonic

generation from contrast microbubbles,” J. Acoust. Soc. Am. 130(5),

3137–3147

Khismatullin, D. B., and Nadim, A. (2002). “Radial oscillations of encapsulated

microbubbles in viscoelastic liquids,” Phys. Fluids 14(10), 3534–3557.

Marmottant, P., and Hilgenfeldt, S. (2003). “Controlled vesicle deformation

and lysis by single oscillating bubbles,” Nature 423, 153–156.

Marmottant, P., van der Meer, S., Emmer, M., Versluis, M., de Jong, N.,

Hilgenfeldt, S., and Lohse, D. (2005). “A model for large amplitude oscil-

lations of coated bubbles accounting for buckling and rupture,” J. Acoust.

Soc. Am. 118(6), 3499–3505.

Overlede, M. (2009). “Ultrasound contrast agents—Dynamics of coated

microbubbles,” Ph.D. thesis, University of Twente, Netherlands.

Paul, S., Katiyar, A., Sarkar, K., Chatterjee, D., Shi, W. T., and Forsberg, F.

(2010). “Material characterization of the encapsulation of an ultrasound

contrast microbubble and its subharmonic response: Strain-softening

interfacial elasticity model,” J. Acoust. Soc. Am. 127(6), 3846–3857.

Pelekasis, N., Vlachomitrou, M., and Lytra, A. (2022). “Compression-only

behavior: Effect of prestress and shell rheology on bifurcation diagrams

and parametric stability of coated microbubbles in an unbounded flow,”

Phys. Rev. Fluids 7, 113601.

Pozrikidis, C. (2001). “Effect of membrane bending stiffness on the defor-

mation of capsules in simple shear flow,” J. Fluid Mech. 440, 269–291.

Sarkar, K., Shi, W. T., Chatterjee, D., and Forsberg, F. (2005).

“Characterization of ultrasound contrast microbubbles using in vitro
experiments and viscous and viscoelastic interface models for

encapsulation,” J. Acoust. Soc. Am. 118(1), 539–550.

Shima, A., Tomita, Y., Gibson, D. C., and Blake, J. R. (1989). “The growth

and collapse of cavitation bubbles near composite surfaces,” J. Fluid

Mech. 203, 199–214.

Thomas, D. H., Looney, P., Steel, R., Pelekasis, N., McDicken, W. N.,

Anderson, T., and Sboros, V. (2009). “Acoustic detection of microbubble

resonance,” Appl. Phys. Lett. 94(24), 243902.

Timoshenko, P., and Woinowsky-Krieger, S. (1959). Theory of Plates and
Shells (McGraw-Hill, Singapore).

Tsiglifis, K., and Pelekasis, N. (2008). “Nonlinear radial oscillations of

encapsulated microbubbles subject to ultrasound: The effect of membrane

constitutive law,” J. Acoust. Soc. Am. 123(6), 4059–4070.

Tsiglifis, K., and Pelekasis, N. (2011). “Parametric stability and dynamic

buckling of an encapsulated microbubble subject to acoustic dis-

turbances,” Phys. Fluids 23, 012102.

Tsiveriotis, K., and Brown, R. A. (1992). “Boundary-conforming mapping

applied to computations of highly deformed solidification interfaces,”

Numer. Methods Fluids 14, 981–1003.

Vlachomitrou, M., and Pelekasis, N. (2021a). “Numerical study of the inter-

action between a pulsating coated microbubble and a rigid wall. I.

Translational motion,” Phys. Rev. Fluids 6, 013601.

Vlachomitrou, M., and Pelekasis, N. (2021b). “Numerical study of the

interaction between a pulsating coated microbubble and a rigid wall. II.

Trapped pulsation,” Phys. Rev. Fluids 6, 013602.

464 J. Acoust. Soc. Am. 155 (1), January 2024 Maria Vlachomitrou and Nikos Pelekasis

https://doi.org/10.1121/10.0024007

 09 August 2024 13:38:18

https://doi.org/10.1017/S0022112002008352
https://doi.org/10.1121/1.412091
https://doi.org/10.1016/j.ultrasmedbio.2006.09.016
https://doi.org/10.1016/j.jcp.2003.07.027
https://doi.org/10.1016/j.ultras.2008.09.007
https://doi.org/10.1121/1.3641455
https://doi.org/10.1063/1.1503353
https://doi.org/10.1038/nature01613
https://doi.org/10.1121/1.2109427
https://doi.org/10.1121/1.2109427
https://doi.org/10.1121/1.3418685
https://doi.org/10.1103/PhysRevFluids.7.113601
https://doi.org/10.1017/S0022112001004657
https://doi.org/10.1121/1.1923367
https://doi.org/10.1017/S0022112089001436
https://doi.org/10.1017/S0022112089001436
https://doi.org/10.1063/1.3151818
https://doi.org/10.1121/1.2909553
https://doi.org/10.1063/1.3536646
https://doi.org/10.1002/fld.1650140807
https://doi.org/10.1103/PhysRevFluids.6.013601
https://doi.org/10.1103/PhysRevFluids.6.013602
https://doi.org/10.1121/10.0024007

